15 research outputs found

    Proteomic study uncovers molecular principles of single-cell-level phenotypic heterogeneity in lipid storage of Nannochloropsis oceanica

    Get PDF
    Abstract Background Nannochloropsis oceanica belongs to a large group of photoautotrophic eukaryotic organisms that play important roles in fixation and cycling of atmospheric CO2. Its capability of storing solar energy and carbon dioxide in the form of triacylglycerol (TAG) of up to 60% of total weight under nitrogen deprivation stress sparked interest in its use for biofuel production. Phenotypes varying in lipid accumulation among an N. oceanica population can be disclosed by single-cell analysis/sorting using fluorescence-activated cell sorting (FACS); yet the phenomenon of single cell heterogeneity in an algae population remains to be fully understood at the molecular level. In this study, combination of FACS and proteomics was used for identification, quantification and differentiation of these heterogeneities on the molecular level. Results For N. oceanica cultivated under nitrogen deplete (−N) and replete (+N) conditions, two groups differing in lipid content were distinguished. These differentiations could be recognized on the population as well as the single-cell levels; proteomics uncovered alterations in carbon fixation and flux, photosynthetic machinery, lipid storage and turnover in the populations. Although heterogeneity patterns have been affected by nitrogen supply and cultivation conditions of the N. oceanica populations, differentiation itself seems to be very robust against these factors: cultivation under +N, −N, in shaker bottles, and in a photo-bioreactor all split into two subpopulations. Intriguingly, population heterogeneity resumed after subpopulations were separately recultivated for a second round, refuting the possible development of genetic heterogeneity in the course of sorting and cultivation. Conclusions This work illustrates for the first time the feasibility of combining FACS and (prote)-omics for mechanistic understanding of phenotypic heterogeneity in lipid-producing microalgae. Such combinatorial method can facilitate molecular breeding and design of bioprocesses

    Applications of imaging flow cytometry for microalgae

    Full text link
    © Springer Science+Business Media New York 2016. The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis® ImageStream® X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression

    Diploid genomic architecture of Nitzschia inconspicua, an elite biomass production diatom.

    No full text
    A near-complete diploid nuclear genome and accompanying circular mitochondrial and chloroplast genomes have been assembled from the elite commercial diatom species Nitzschia inconspicua. The 50 Mbp haploid size of the nuclear genome is nearly double that of model diatom Phaeodactylum tricornutum, but 30% smaller than closer relative Fragilariopsis cylindrus. Diploid assembly, which was facilitated by low levels of allelic heterozygosity (2.7%), included 14 candidate chromosome pairs composed of long, syntenic contigs, covering 93% of the total assembly. Telomeric ends were capped with an unusual 12-mer, G-rich, degenerate repeat sequence. Predicted proteins were highly enriched in strain-specific marker domains associated with cell-surface adhesion, biofilm formation, and raphe system gliding motility. Expanded species-specific families of carbonic anhydrases suggest potential enhancement of carbon concentration efficiency, and duplicated glycolysis and fatty acid synthesis pathways across cytosolic and organellar compartments may enhance peak metabolic output, contributing to competitive success over other organisms in mixed cultures. The N. inconspicua genome delivers a robust new reference for future functional and transcriptomic studies to illuminate the physiology of benthic pennate diatoms and harness their unique adaptations to support commercial algae biomass and bioproduct production
    corecore