1,685 research outputs found

    Helios-2 Vela-Ariel-5 gamma-ray burst source position

    Get PDF
    The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure

    Developing collaborative partnerships with culturally and linguistically diverse families during the IEP process

    Full text link
    Family participation in the special education process has been federally mandated for 40 years, and educators recognize that effective collaboration with their students’ families leads to improved academic and social outcomes for students. However, while some family-school relationships are positive and collaborative, many are not, particularly for culturally and linguistically diverse (CLD) families. This article provides practice guidelines based in research for teachers who seek to improve their practices when working with CLD families who have children served by special education

    On the presence of nonjet "higher harmonic" components in 2D angular correlations from high energy heavy ion collisions

    Full text link
    It is conjectured that several higher harmonic flows vmv_m may result from initial-state geometry fluctuations in \aa collisions coupled to a radially-expanding medium. But as with "elliptic flow" v2v_2 measurements, non-hydrodynamic mechanisms such as jet production may contribute to other higher azimuth multipoles vmv_m as biases. Careful distinctions should be maintained between jet-related and nonjet (possibly hydrodynamic) contributions to vmv_m (e.g., "nonflow" and "flow"). In this study we consider several questions: (a) To what extent do jet-like structures in two-dimensional (2D) angular correlations contribute to azimuth multipoles inferred from various vmv_m methods? (b) If a multipole element is added to a 2D fit model is a nonzero amplitude indicative of a corresponding flow component? and (c) Can 2D correlations establish the necessity of nonjet contributions to some or all higher multipoles? Model fits to 2D angular correlations are used to establish the origins of azimuth multipoles inferred from 1D projections onto azimuth or from nongraphical numerical methods. We find that jet-like angular correlations, and specifically a 2D peak at the angular origin consistent with jet production, constitute the dominant contribution to inferred higher multipoles, and the data do not {\em require} higher multipoles in isolation from the jet-like 2D peak. Inference of "higher harmonic flows" results from identifying certain nominally jet-like structure as flow manifestations through unjustified application of 1D Fourier series analysis. Although the peak structure at the angular origin is strongly modified in more-central collisions some properties remain compatible with relevant pQCD theory expectations for jet production.Comment: 14 pages, 11 figure

    Applicability of Monte Carlo Glauber models to relativistic heavy ion collision data

    Full text link
    The accuracy of Monte Carlo Glauber model descriptions of minimum-bias multiplicity frequency distributions is evaluated using data from the Relativistic Heavy Ion Collider (RHIC) within the context of a sensitive, power-law representation introduced previously by Trainor and Prindle (TP). Uncertainties in the Glauber model input and in the mid-rapidity multiplicity frequency distribution data are reviewed and estimated using the TP centrality methodology. The resulting errors in model-dependent geometrical quantities used to characterize heavy ion collisions ({\em i.e.} impact parameter, number of nucleon participants NpartN_{part}, number of binary interactions NbinN_{bin}, and average number of binary collisions per incident participant nucleon ν\nu) are presented for minimum-bias Au-Au collisions at sNN\sqrt{s_{NN}} = 20, 62, 130 and 200 GeV and Cu-Cu collisions at sNN\sqrt{s_{NN}} = 62 and 200 GeV. Considerable improvement in the accuracy of collision geometry quantities is obtained compared to previous Monte Carlo Glauber model studies, confirming the TP conclusions. The present analysis provides a comprehensive list of the sources of uncertainty and the resulting errors in the above geometrical collision quantities as functions of centrality. The capability of energy deposition data from trigger detectors to enable further improvements in the accuracy of collision geometry quantities is also discussed.Comment: 27 pages, 4 figures, 11 table

    The static and dynamic conductivity of warm dense Aluminum and Gold calculated within a density functional approach

    Full text link
    The static resistivity of dense Al and Au plsmas are calculated where all the needed inputs are obtained from density functional theory (DFT). This is used as input for a study of the dynamic conductivity. These calculations involve a self-consistent determination of (i) the equation of state (EOS) and the ionization balance, (ii) evaluation of the ion-ion, and ion-electron pair-distribution functions, (iii) Determination of the scattering amplitudes, and finally the conductivity. We present data for the static resistivity of Al for compressions 0.1-2.0, and in the temperature range T= 0.1 - 10 eV. Results for Au in the same temperature range and for compressions 0.1-1.0 is also given. In determining the dynamic conductivity for a range of frequencies consistent with standard laser probes, a knowledge of the electronic eigenstates and occupancies of Al- or Au plasma becomes necessary. They are calculated using a neutral-pseudoatom model. We examine a number of first-principles approaches to the optical conductivity, including many-body perturbation theory, molecular-dynamics evaluations, and simplified time-dependent DFT. The modification to the Drude conductivity that arises from the presence of shallow bound states in typical Al-plasmas is examined and numerical results are given at the level of the Fermi Golden rule and an approximate form of time-dependent DFT.Comment: 5 figures, Latex original. Cross-referencced to PLASMA PHYSIC

    Second Generation Toolset for Calculation of Induced Seismicity Risk Profiles

    Get PDF
    corecore