21 research outputs found

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Near-Infrared Spectral Monitoring of Triton with IRTF/SpeX II: Spatial Distribution and Evolution of Ices

    Full text link
    This report arises from an ongoing program to monitor Neptune's largest moon Triton spectroscopically in the 0.8 to 2.4 micron range using IRTF/SpeX. Our objective is to search for changes on Triton's surface as witnessed by changes in the infrared absorption bands of its surface ices N2, CH4, H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 through 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy & Young 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton's Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton's N2 ice: the 2.15 micron absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton's CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton's CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.Comment: 22 pages, 13 figures, 5 tables, to appear in Icaru

    Saturn Atmospheric Structure and Dynamics

    Full text link
    2 Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee ” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn’s south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather laye

    Spinal ephrin B

    No full text

    A model of the user's proximity for bayesian inference

    No full text
    Embodied nonverbal cues are fundamental for regulating human-human social iteractions. The physical embodiment of robots makes it likely that they will have to exhibit appropriate nonverbal interactive behaviors. In this paper we propose a model of the user's proximity based on a superposition of quasi-Gaussian probability distributions which allows to express findings from HRI trials regarding distances and direction of approach in a human-robot interaction scenario. The way the model is formulated is suitable for well-established Bayesian filtering techniques, and thus the inference of the preferred distance and direction of approach in a human robot interaction scenario can be regarded as a state estimation problem. Results derived from simulations show the effectiveness of the inference process

    Head pose estimation for a domestic robot

    No full text
    Gaze direction is an important communicative cue. In order to use this cue for human-robot interaction, software needs to be developed that enables the estimation of head pose. We began by designing an application that is able to make a good estimate of the head pose, and, contrary to earlier head pose estimation approaches, that works for non-optimal lighting conditions. Initial results show that our approach using multiple networks trained with differing datasets, gives a good estimate of head pose, and it works well in poor lighting conditions and with low-resolution images. We validated our head pose estimation method using a custom built database of images of human heads. The actual head poses were measured using a trakStar (Ascension Technologies) six-degrees-of-freedom sensor. The head pose estimation algorithm allows us to assess a person’s focus of attention, which allows robots to react in a timely fashion to dynamic human communicative cues

    Adapting Autonomous Behavior Using an Inverse Trust Estimation

    No full text
    Abstract. Robots are added to human teams to increase the team’s skills or capabilities. To gain the acceptance of the human teammates, it may be important for the robot to behave in a manner that the teammates consider trustworthy. We present an approach that allows a robot’s behavior to be adapted so that it behaves in a trustworthy manner. The adaptation is guided by an inverse trust metric that the robot uses to estimate the trust a human teammate has in it. We evaluate our method in a simulated robotics domains and demonstrate how the agent can adapt to a teammate’s preferences
    corecore