61 research outputs found

    Aquaporin water channels in transepithelial fluid transport

    Get PDF
    Aquaporins (AQPs) are membrane water channels that are involved in a diverse set of functions in mammalian physiology including epithelial fluid transport, brain water balance, cell migration, cell proliferation, neuroexcitation, fat metabolism, epidermal hydration, and others. Phenotype analysis of knockout mice has demonstrated an important role for AQPs in transepithelial fluid transport in kidney tubules, salivary and airway submucosal glands, choroid plexus and ciliary epithelium. The physiological functions of these epithelia, such as absorption of glomerular filtrate by proximal tubule and secretion of saliva by salivary gland, involve rapid transcellular water transport across epithelial cell barriers. Studies in knockout mice have also provided evidence that AQPs are not physiologically important in some epithelia where they are expressed, including lacrimal gland, sweat gland, gallbladder, alveoli and airways. Rates of transepithelial fluid transport per unit membrane surface area in these epithelia are substantially lower than transepithelial fluid transport rates in proximal tubule and salivary gland. Pharmacological inhibition of AQP water permeability in epithelia, with consequent reduced fluid transport, offers potential therapy for human diseases involving water imbalance such as congestive heart failure, hypertension and glaucoma

    Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    Get PDF
    The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities

    Therapeutic Cleavage of Anti–Aquaporin-4 Autoantibody in Neuromyelitis Optica by an IgG-Selective Proteinase

    No full text
    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system caused by binding of pathogenic IgG autoantibodies (NMO-IgG) to astrocyte water channel aquaporin-4 (AQP4). Astrocyte damage and downstream inflammation require NMO-IgG effector function to initiate complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we evaluated the potential therapeutic utility of the bacterial enzyme IdeS (IgG-degrading enzyme of Streptococcus pyogenes), which selectively cleaves IgG antibodies to yield Fc and F(ab')(2) fragments. In AQP4-expressing cell cultures, IdeS treatment of monoclonal NMO-IgGs and NMO patient sera abolished CDC and ADCC, even when IdeS was added after NMO-IgG was bound to AQP4. Binding of NMO-IgG to AQP4 was similar to that of the NMO-F(ab')(2) generated by IdeS cleavage. NMO-F(ab')(2) competitively displaced pathogenic NMO-IgG, preventing cytotoxicity, and the Fc fragments generated by IdeS cleavage reduced CDC and ADCC. IdeS efficiently cleaved NMO-IgG in mice in vivo, and greatly reduced NMO lesions in mice administered NMO-IgG and human complement. IgG-selective cleavage by IdeS thus neutralizes NMO-IgG pathogenicity, and yields therapeutic F(ab')(2) and Fc fragments. IdeS treatment, by therapeutic apheresis or direct administration, may be beneficial in NMO

    Therapeutic Cleavage of Anti-Aquaporin-4 Autoantibody in Neuromyelitis Optica by an IgG-Selective Proteinase

    No full text
    ABSTRACT Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system caused by binding of pathogenic IgG autoantibodies (NMO-IgG) to astrocyte water channel aquaporin-4 (AQP4). Astrocyte damage and downstream inflammation require NMO-IgG effector function to initiate complement-dependent cytotoxicity (CDC) and antibodydependent cell-mediated cytotoxicity (ADCC). Here, we evaluated the potential therapeutic utility of the bacterial enzyme IdeS (IgG-degrading enzyme of Streptococcus pyogenes), which selectively cleaves IgG antibodies to yield Fc and F(ab9) 2 fragments. In AQP4-expressing cell cultures, IdeS treatment of monoclonal NMO-IgGs and NMO patient sera abolished CDC and ADCC, even when IdeS was added after NMO-IgG was bound to AQP4. Binding of NMO-IgG to AQP4 was similar to that of the NMO-F(ab9) 2 generated by IdeS cleavage. NMO-F(ab9) 2 competitively displaced pathogenic NMO-IgG, preventing cytotoxicity, and the Fc fragments generated by IdeS cleavage reduced CDC and ADCC. IdeS efficiently cleaved NMO-IgG in mice in vivo, and greatly reduced NMO lesions in mice administered NMO-IgG and human complement. IgGselective cleavage by IdeS thus neutralizes NMO-IgG pathogenicity, and yields therapeutic F(ab9) 2 and Fc fragments. IdeS treatment, by therapeutic apheresis or direct administration, may be beneficial in NMO
    • …
    corecore