226 research outputs found

    The 3-Dimensional Structure of HH 32 from GMOS IFU Spetroscopy

    Full text link
    We present new high resolution spectroscopic observations of the Herbig-Haro object HH 32 from System Verification observations made with the GMOS IFU at Gemini North Observatory. The 3D spectral data covers a 8''.7 x 5''.85 spatial field and 4820 - 7040 Angstrom spectral region centered on the HH~32 A knot complex. We show the position-dependent line profiles and radial velocity channel maps of the Halpha line, as well as line ratio velocity channel maps of [OIII]5007/Halpha, [OI]6300/Halpha, [NII]6583/Halpha, [SII](6716+6730)/Halpha and [SII]6716/6730. We find that the line emission and the line ratios vary significantly on spatial scales of ~1'' and over velocities of ~50 km/s. A ``3/2-D'' bow shock model is qualitatively successful at reproducing the general features of the radial velocity channel maps, but it does not show the same complexity as the data and it fails to reproduce the line ratios in our high spatial resolution maps. The observations of HH 32 A show two or three superimposed bow shocks with separations of ~3'', which we interpret as evidence of a line of sight superposition of two or three working surfaces located along the redshifted body of the HH 32 outflow.Comment: Accepted for Publication in the Astronomical Journal (January 2004

    A Micro Molecular Bipolar Outflow From HL Tau

    Full text link
    We present detailed geometry and kinematics of the inner outflow toward HL Tau observed using Near Infrared Integral Field Spectograph (NIFS) at the Gemini-North 8-m Observatory. We analyzed H2 2.122 um emission and [Fe II] 1.644 um line emission as well as the adjacent continuum observed at a <0".2 resolution. The H2 emission shows (1) a bubble-like geometry to the northeast of the star, as briefly reported in the previous paper, and (2) faint emission in the southwest counterflow, which has been revealed through careful analysis. The emission on both sides of the star show an arc 1".0 away from the star, exhibiting a bipolar symmetry. Different brightness and morphologies in the northeast and southwest flows are attributed to absorption and obscuration of the latter by a flattened envelope and a circumstellar disk. The H2 emission shows a remarkably different morphology from the collimated jet seen in [Fe II] emission. The positions of some features coincide with scattering continuum, indicating that these are associated with cavities in the dusty envelope. Such properties are similar to millimeter CO outflows, although the spatial scale of the H2 outflow in our image (~150 AU) is strikingly smaller than the mm outflows, which often extend over 1000-10000 AU scales. The position-velocity diagram of the H2 and [Fe II] emission do not show any evidence for kinematic interaction between these flows. All results described above support the scenario that the jet is surrounded by an unseen wide-angled wind, which interacts with the ambient gas and produce the bipolar cavity and shocked H2 emission.Comment: 13 pages, 4 figures, accepted for publication in ApJ

    Spatially Resolved Molecular Hydrogen Emission in the Inner 200AU Environments of Classical T Tauri Stars

    Full text link
    We present 2.0-2.4micron integral field spectroscopy at adaptive optics spatial resolution (~0.''1) obtained with the Near-infrared Integral Field Spectrograph (NIFS) at Gemini North Observatory of six Classical T Tauri stars: T Tau, DG Tau, XZ Tau, HL Tau, RW Aur and HV Tau C. In all cases, the v=1-0 S(1) (2.12 micron) emission is detected at spatially extended distances from the central stars. The bulk of the H_2 emission is typically not spatially coincident with the location of continuum flux. Multiple transitions detected in the K-band spectra show that H_2 level populations are typical of gas in thermal equilibrium with excitation temperatures in the 1800K-2300 K range. Three of the stars have H_2 velocity profiles that are centered at the stellar radial velocity, and three show velocity shifts with respect to the system. Each of the stars studied here show observed excitation temperatures, spatial extents, and kinematics of the H_2 that are most consistent with shock excited emission from the inner regions of the known Herbig-Haro energy flows or from wide-angle winds encompassing the outflows rather than predominantly from UV or X-ray stimulated emission from the central stars. The data presented in this study highlights the sensitivity of adaptive optics-fed integral field spectroscopy for spatially resolving emission line structures in the environments of bright young stars.Comment: 50 pages, 13 Figures. Accepted for publication in the Astrophysical Journal. Full Resolution paper available at: http://www.astro.sunysb.edu/tracy/pubs/Beck07.pd

    Stable and Unstable Regimes of Mass Accretion onto RW Aur A

    Full text link
    We present monitoring observations of the active T Tauri star RW Aur, from 2010 October to 2015 January, using optical high-resolution (R>10000) spectroscopy with CFHT-ESPaDOnS. Optical photometry in the literature shows bright, stable fluxes over most of this period, with lower fluxes (by 2-3 mag.) in 2010 and 2014. In the bright period our spectra show clear photospheric absorption, complicated variation in the Ca II 8542 A emission}profile shapes, and a large variation in redshifted absorption in the O I 7772 and 8446 A and He I 5876 A lines, suggesting unstable mass accretion during this period. In contrast, these line profiles are relatively uniform during the faint periods, suggesting stable mass accretion. During the faint periods the photospheric absorption lines are absent or marginal, and the averaged Li I profile shows redshifted absorption due to an inflow. We discuss (1) occultation by circumstellar material or a companion and (2) changes in the activity of mass accretion to explain the above results, together with near-infrared and X-ray observations from 2011-2015. Neither scenario can simply explain all the observed trends, and more theoretical work is needed to further investigate their feasibilities.Comment: 23 pages, 11 figures, 4 tables, accepted by Astrophysical Journal; some typos corrected on 4/18/201

    Evidence for Extinction and Accretion Variability in T Tau S

    Full text link
    We present angularly resolved spectra of T Tau North and South in the 3 micron water ice feature and K-band. Most of the water ice absorption lies along the line of sight toward T Tau South, confirming that it is viewed through stronger extinction. A decrease in ice-band absorption toward T Tau S between December 1998 and January 2000, significant at the 2 sigma level, was associated with an increase in its near infrared flux. Br gamma emission is detected in T Tau North and South and H_{2} (2.12 micron) emission only toward T Tau South, consistent with previous studies of infrared companions to T Tauri stars. Our results suggest that the near IR variability of T Tau S is probably caused by both variations in accretion rate and variable extinction along the line of sight.Comment: 10 pages, 5 figures. Accepted for publication in the Astrophysical Journa
    • 

    corecore