440 research outputs found

    PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs

    Full text link
    Models of dark matter with ~ GeV scale force mediators provide attractive explanations of many high energy anomalies, including PAMELA, ATIC, and the WMAP haze. At the same time, by exploiting the ~ MeV scale excited states that are automatically present in such theories, these models naturally explain the DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and exciting dark matter (XDM) scenarios, respectively. Interestingly, with only weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited states with delta < 2 m_e is longer than the age of the universe. The fractional relic abundance of these excited states depends on the temperature of kinetic decoupling, but can be appreciable. There could easily be other mechanisms for rapid decay, but the consequences of such long-lived states are intriguing. We find that CDMS constrains the fractional relic population of ~100 keV states to be <~ 10^-2, for a 1 TeV WIMP with sigma_n = 10^-40 cm^2. Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can push this limit significantly lower. We also consider the possibility that the DAMA excitation occurs from a metastable state into the XDM state, which decays via e+e- emission, which allows lighter states to explain the INTEGRAL signal due to the small kinetic energies required. Such models yield dramatic signals from down-scattering, with spectra peaking at high energies, sometimes as high as ~1 MeV, well outside the usual search windows. Such signals would be visible at future Ar and Si experiments, and may be visible at Ge and Xe experiments. We also consider other XDM models involving ~ 500 keV metastable states, and find they can allow lighter WIMPs to explain INTEGRAL as well.Comment: 22 pages, 7 figure

    Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Get PDF
    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR +CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema

    Common Coding Variants of the HNF1A Gene Are Associated With Multiple Cardiovascular Risk Phenotypes in Community-Based Samples of Younger and Older European-American Adults: The Coronary Artery Risk Development in Young Adults Study and The Cardiovascular Health Study

    Get PDF
    The transcription factor hepatocyte nuclear factor 1 (HNF-1) α regulates the activity of a number of genes involved in innate immunity, blood coagulation, lipid and glucose transport and metabolism, and cellular detoxification. Common polymorphisms of the HNF-1α gene (HNF1A) were recently associated with plasma C-reactive protein (CRP) and gamma-glutamyl transferase (GGT) concentration in middle-aged to older European-Americans (EA)

    Common variants in the CRP gene in relation to longevity and cause-specific mortality in older adults: The Cardiovascular Health Study

    Get PDF
    Common polymorphisms in the CRP gene are associated with plasma CRP levels in population-based studies, but associations with age-related events are uncertain. A previous study of CRP haplotypes in older adults was broadened to include longevity and cause-specific mortality (all-cause, non-cardiovascular (nonCV), and cardiovascular (CV)). Common haplotypes were inferred from four tagSNPs in 4512 whites and five tagSNPs in 812 blacks from the Cardiovascular Health Study, a longitudinal cohort of adults over age 65. Exploratory analyses addressed early versus late mortality. CRP haplotypes were not associated with all-cause mortality or longevity overall in either population, but associations with all-cause mortality differed during early and late periods. In blacks, the haplotype tagged by 3872A (rs1205) was associated with increased risk of nonCV mortality, relative to other haplotypes (adjusted hazard ratio for each additional copy: 1.42, 95% CI: 1.07, 1.87). Relative to other haplotypes, this haplotype was associated with decreased risk of early but not decreased risk of late CV mortality in blacks; among whites, a haplotype tagged by 2667C (rs1800947) gave similar but nonsignificant findings. If confirmed, CRP genetic variants may be weakly associated with CV and nonCV mortality in older adults, particularly in self-identified blacks

    Markers of inflammation and cardiovascular disease: Application to Clinical and Public Health Practice: A Statement for Healthcare Professionals From the Centers for Disease Control and Prevention and the American Heart Association

    Get PDF
    In 1998, the American Heart Association convened Prevention Conference V to examine strategies for the identification of high-risk patients who need primary prevention. Among the strategies discussed was the measurement of markers of inflammation.1 The Conference concluded that “many of these markers (including inflammatory markers) are not yet considered applicable for routine risk assessment because of: (1) lack of measurement standardization, (2) lack of consistency in epidemiological findings from prospective studies with endpoints, and (3) lack of evidence that the novel marker adds to risk prediction over and above that already achievable through the use of established risk factors.” The National Cholesterol Education Program Adult Treatment Panel III Guidelines identified these markers as emerging risk factors,1a which could be used as an optional risk factor measurement to adjust estimates of absolute risk obtained using standard risk factors. Since these publications, a large number of peer-reviewed scientific reports have been published relating inflammatory markers to cardiovascular disease (CVD). Several commercial assays for inflammatory markers have become available. As a consequence of the expanding research base and availability of assays, the number of inflammatory marker tests ordered by clinicians for CVD risk prediction has grown rapidly. Despite this, there has been no consensus from professional societies or governmental agencies as to how these assays of markers of inflammation should be used in clinical practice
    corecore