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Suppression of Tumorigenicity 2 in Heart Failure With Preserved
Ejection Fraction
Omar F. AbouEzzeddine, MDCM, MS; Paul M. McKie, MD; Shannon M. Dunlay, MD, MS; Susanna R. Stevens, MS; G. Michael Felker, MD;
Barry A. Borlaug, MD; Horng H. Chen, MD; Russell P. Tracy, PhD; Eugene Braunwald, MD; Margaret M. Redfield, MD

Background-—Soluble suppression of tumorigenicity 2 (sST2) receptor is a biomarker that is elevated in certain systemic
inflammatory diseases. Comorbidity-driven microvascular inflammation is postulated to play a key role in heart failure with
preserved ejection fraction (HFpEF) pathophysiology, but data on how sST2 relates to clinical characteristics or inflammatory
conditions or biomarkers in HFpEF are limited. We sought to determine circulating levels and clinical correlates of sST2 in HFpEF.

Methods and Results-—At enrollment, patients (n=174) from the Phosphodiesterase-5 Inhibition to Improve Clinical Status And
Exercise Capacity in Diastolic Heart Failure (RELAX) trial of sildenafil in HFpEF had sST2 levels measured. Clinical characteristics;
cardiac structure and function; exercise performance; and biomarkers of neurohumoral activation, systemic inflammation and
fibrosis, and myocardial necrosis were assessed in relation to sST2 levels. Median sST2 levels in male and female HFpEF patients
were 36.7 ng/mL (range 30.9–49.2 ng/mL; reference range 4–31 ng/mL) and 30.8 ng/mL (range 25.3–39.3 ng/mL; reference
range 2–21 ng/mL), respectively. Among HFpEF patients, higher sST2 levels were associated with the presence of diabetes
mellitus; atrial fibrillation; renal dysfunction; right ventricular pressure overload and dysfunction; systemic congestion; exercise
intolerance; and biomarkers of systemic inflammation and fibrosis, neurohumoral activation, and myocardial necrosis (P<0.05 for
all). sST2 was not associated with left ventricular structure or left ventricular systolic or diastolic function.

Conclusions-—In HFpEF, sST2 levels were associated with proinflammatory comorbidities, right ventricular pressure overload and
dysfunction, and systemic congestion but not with left ventricular geometry or function. These data suggest that ST2 may be a
marker of systemic inflammation in HFpEF and potentially of extracardiac origin.

Clinical Trial Registration-—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00763867. ( J Am Heart Assoc. 2017;6:
e004382. DOI: 10.1161/JAHA.116.004382.)
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T he suppression of tumorigenicity 2 (ST2) receptor is a
member of the interleukin-1 family of receptors and

exists as transmembrane (ST2L) and soluble (sST2) isoforms

differentially regulated by alternative splicing.1,2 Interleukin-33
(IL-33) binds to ST2L to elicit downstream signaling, whereas
sST2 acts as a nonfunctional decoy IL-33 receptor, limiting
IL-33/ST2L signaling.3 In patients with autoimmune inflamma-
tory conditions, sST2 levels are elevated; in related experimental
models, IL-33/ST2L signaling is proinflammatory and exacer-
bates clinical severity, whereas sST2 administration abrogates
IL-33/ST2L signaling and is protective.3,4 In contrast, in
cardiomyocytes and experimental heart failure (HF), IL-33/
ST2L signaling is activated with cardiomyocyte/cardiac mechan-
ical stress and neurohumoral activation but exerts protective
cardiac antiremodeling effects. In these models, sST2 adminis-
tration worsens the cardiac phenotype.4,5

Although elevated sST2 levels have been repeatedly shown
to be associated with worse outcomes in HF with reduced
ejection fraction (HFrEF),6–16 sST2 appears to be of extracar-
diac origin in HFrEF.17–20 To date, sST2 has not been well
studied in HF with preserved ejection fraction (HFpEF). In
HFpEF, comorbidity-driven microvascular endothelial inflam-
mation may play a key role in the genesis of myocardial,
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vascular, skeletal muscle, and other end-organ damage,21–25

and IL-33/ST2 signaling appears to be involved in vascular
endothelial cell inflammation and remodeling.17,26,27 Further-
more, once established, HF may itself perpetuate inflammation
in proportion to the severity of systemic congestion and
hypoperfusion.28,29 Thus, sST2 may be elevated in HFpEF
caused by cardiomyocyte stress, comorbidity-driven systemic
inflammation, or inflammation related to the severity of HF.
Accordingly, in the comprehensively characterized HFpEF
patients enrolled in the Phosphodiesterase-5 Inhibition to
Improve Clinical Status And Exercise Capacity in Diastolic
Heart Failure (RELAX) trial,30 we determined whether circulat-
ing sST2 (henceforth ST2) levels were associated with the
severity of cardiac remodeling and dysfunction, proinflamma-
tory comorbidities, or markers of clinical HF severity.

Methods
The RELAX trial was conducted by the Heart Failure Clinical
Research Network (HFN) and funded by the National Heart,
Lung, and Blood Institute.30 All patients provided written
informed consent, and the trial was approved by the
institutional review board at each participating site.

The design, entry criteria, and results of the RELAX trial were
reported previously.30,31 Briefly, RELAX enrolled 216 outpa-
tients who had ejection fraction ≥50% and objective evidence of
HF. In addition, patients were required to have elevated
N-terminal pro-B-type natriuretic peptide (NT-proBNP;
≥400 pg/mL) or elevated invasively measured filling pressures
and reduced exercise capacity (≤60% age, sex, and body size–
specific predicted peak oxygen consumption). Patients with an
estimated glomerular filtration rate (Modification of Diet in Renal
Disease equation) <20 mL/min per 1.73 m2 were ineligible.

Participants underwent baseline studies that included a
history and physical examination, echocardiography, cardiac
magnetic resonance imaging if in sinus rhythm (n=115),
cardiopulmonary exercise test, 6-minute walk test, Minnesota
Living with Heart Failure Questionnaire, and phlebotomy for
biomarker measurements.31

Comprehensive Doppler echocardiography and cardiac
magnetic resonance imaging were performed according to
study protocols32 with measurements performed at the HFN
echocardiography (Mayo Clinic, Rochester, MN) and cardiac
magnetic resonance imaging (Duke University, Durham, NC)
core laboratories. The cardiopulmonary exercise test was
performed according to a RELAX-specific protocol and inter-
preted by the HFN cardiopulmonary exercise test core labora-
tory (Massachusetts General Hospital, Boston,MA), as reported
previously.31 Biomarker measurements were performed by the
HFN biomarker core laboratory (University of Vermont, Burling-
ton, VT), as described previously30,31 and included NT-proBNP,
aldosterone, endothelin-1, cystatin-C, creatinine, uric acid, pro–

collagen III N-terminal peptide, C-telopeptide for type I collagen,
high-sensitivity troponin I, and high-sensitivity C-reactive protein.
ST2 levelsweremeasured on banked samples by a high-sensitivity
sandwichmonoclonal immunoassay (Presage� ST2 assay; Critical
Diagnostics). The normal values for ST2 are somewhat controver-
sial, but in a carefully screenedhealthyAustriancohortwithnormal
inflammatory markers (C-reactive protein, procalcitonin, and
interleukin-6) and normal BNP, sex-specific normal ranges were
4 to31 ng/mL formaleparticipantsand2 to21 ng/mL for female
participants using the Presage� ST2 assay.33

Statistical Analysis
Data are presented as median (25th–75th percentiles) or
number (percentage) across ST2 tertiles. Differences across
ST2 tertiles were tested with Kruskal–Wallis, v2, or Fisher
exact tests, as appropriate. In healthy persons, ST2 levels are
higher in men than in women but are not associated with age,
body mass index, or renal function.33,34 Thus, multivariable
least squares linear or logistic regression was used to assess
the relationship between variables of interest and ST2 as a
categorical variable (tertiles) adjusting for sex. With our
sample size, we had 84% and 92% power to detect correla-
tions of 0.22 and 0.25, respectively, between ST2 and other
continuous measures. The associations between ST2 (log
transformed) and other biomarkers (log transformed) are
presented with Pearson correlation coefficients and were
tested using linear regression models without and with sex
adjustment. Analyses were performed by the HFN data
coordinating center using SAS version 9.4 (SAS Institute). A
P<0.05 (2-sided) was considered statistically significant.

Results
Of the 216 participants enrolled in RELAX, stored serum from
174 patients was available to measure ST2 at enrollment.
Included participants had a median age of 69 years, and 52%
were men. Participants without stored serum availability were
more likely to have had a HF hospitalization, worse renal
function, and higher NT-proBNP levels (Table S1).

The median ST2 levels were 34.3 ng/mL (25th–75th
percentiles 26.9–46.6 ng/mL) with a range from 14.4 to
197.9 ng/mL and higher levels in male participants (median
36.7 ng/mL [25th–75th percentiles 30.9–49.2 ng/mL]) than in
female participants (median30.8 ng/mL [25th–75th percentiles
25.3–39.3 ng/mL]) (Figure 1, Table 1). Accordingly, all results
described in the following sections were adjusted for sex.

Clinical Characteristics and ST2 Levels in HFpEF
There was no association between ST2 levels and age, body
size, or history of HF hospitalization (Table 1). However,
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patients with higher ST2 levels were more likely to have
diabetes mellitus (P=0.005), hypertension (P=0.023), atrial
fibrillation or flutter (P=0.049), and renal dysfunction
(P<0.0001) and were more likely to be treated with diuretics
(P=0.013). Lung disease prevalence was similar across ST2
tertiles. Patients with higher ST2 levels also had more
congestion with higher NT-proBNP levels (P<0.0001), a higher
prevalence of jugular venous pressure elevation (P=0.003),
more peripheral edema (P=0.0006), and worse New York
Heart Association functional class (P=0.029), although ST2
levels were not associated with the Minnesota Living with
Heart Failure Questionnaire score (Table 1).

Exercise Performance and ST2 Levels in HFpEF
Six-minute walk distance (P=0.012), peak oxygen consumption
(P=0.017), percentage of predicted peak oxygen consumption
(P=0.017), and peak systolic blood pressure (P=0.005) all declined
with increasing ST2 levels (Table 2). There were nonsignificant
trendstoward lowerpeakheart rate (P=0.07)andchronotropic index
(P=0.08) despite similar effort, as reflected in the respiratory
exchange ratio. There was no association between ST2 levels and
ventilatory efficiency (VE/VCO2 slope).

Cardiac Structure and Function and ST2 Levels in
HFpEF
There were no associations between ST2 levels and left
ventricular (LV) diastolic or systolic function parameters or LV

geometry as assessed by echocardiography (Table 3) or in
patients in sinus rhythm, by cardiac magnetic resonance
(Table S2). Participants with higher ST2 levels had higher right
ventricular (RV) systolic pressure (P=0.016) and worse RV
function (lower tricuspid annular plane systolic excursion,
P=0.015) by echocardiography (Table 3). In contrast,
NT-proBNP levels were strongly associated with all diastolic
function parameters, LV geometry, and RV load and systolic
function but not with LV ejection fraction (Table S3).

ST2 and Other Biomarkers in HFpEF
ST2 concentrations were correlated with endothelin-1 (r=0.33,
P<0.0001) and with biomarkers of systemic inflammation (high-
sensitivity C-reactive protein, r=0.22, P=0.002), fibrosis
(C-telopeptide for type I collagen, r=0.30, P=0.0004), and myocar-
dial necrosis (high-sensitivity troponin-I, r=0.33, P<0.0001) but not
with aldosterone or pro–collagen III N-terminal peptide (Figure 2).

Discussion
In this comprehensively phenotyped cohort of patients with
HFpEF, ST2 levels were elevated compared with published
normative sex-specific values. ST2 was higher in the presence
of several proinflammatory comorbidities (diabetes mellitus,
atrial fibrillation, renal dysfunction) and associated with
greater RV pressure overload and dysfunction; central venous
congestion; exercise intolerance; and biomarkers reflective of
systemic inflammation and fibrosis, neurohumoral activation,
and myocardial necrosis. ST2 levels were not associated with
LV geometry or LV systolic or diastolic function. In contrast,
NT-proBNP—a biomarker of myocardial origin, the production
of which is stimulated by wall stress—correlated with the
severity of LV remodeling and diastolic dysfunction. These
data add to our understanding of ST2 in HFpEF and suggest
that in HFpEF, ST2 is predominately a marker of systemic
inflammation activated by interplay between proinflammatory
comorbidities and HF severity–related systemic congestion.

Association of ST2 Levels With Sex
Consistent with findings in other cohorts,33–35 male RELAX
participants had higher ST2 levels than their female counter-
parts. Although the mechanism of sex differences in ST2 levels
remains unclear, the considerable differences of ST2 levels
between sexes warrant adjustment for sex when analyzing the
association between ST2 levels and disease severity.36

ST2 as a Biomarker in HFpEF
Despite the lower percentage of male participants in RELAX
compared with studies of ambulatory HFrEF patients, the

Figure 1. Frequency distribution of suppression of tumorigenic-
ity 2 (ST2) levels in heart failure with preserved ejection fraction
overall and by sex (insert). The distribution of baseline ST2 levels
in the RELAX trial cohort (n=174). Overall, median ST2 levels were
34.3 ng/mL (25th–75th percentiles 26.9–46.6 ng/mL) and were
higher in male participants (36.7 ng/mL [25th–75th percentiles
30.9–49.2 ng/mL]) than in female participants (30.8 ng/mL
[25th–75th percentiles 25.3–39.3 ng/mL]).
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median level of ST2 in this HFpEF cohort was higher than
that observed in studies of ambulatory HFrEF patients8,10

and approached the 33–35 ng/mL cut point associated
with a higher risk of cardiovascular outcomes in chronic
HFrEF.8,10,11 Median ST2 levels in RELAX were also higher
than those reported in patients with ischemic heart disease
(19–24 ng/mL)37,38 and in the general population (22 ng/
mL)34 but lower than those reported in acute HF or
pulmonary disease (42–76 ng/mL)15,33,39 and much lower
than observed in critically ill intensive care unit patients
(555–745 ng/mL).33,40 Importantly, all of these studies
used the same Presage� ST2 assay. Although relatively few
studies have evaluated ST2 levels in HFpEF,6,18,35 the only

one to assess ST2 using this assay was a post hoc analysis
of the PARAMOUNT (Prospective Comparison of ARNI With
ARB on Management of Heart Failure With Preserved
Ejection Fraction) trial that described elevated median ST2
levels (33 ng/mL), similar to the HFpEF patients in
RELAX.35

Association of ST2 Levels With Clinical
Characteristics
The associations we observed between ST2 levels and
comorbidities including diabetes mellitus, renal dysfunction,
and atrial fibrillation as well as congestion, diuretic use, and

Table 1. Baseline Patient Characteristics by Tertiles of Baseline ST2 Levels

Low ST2
Tertile (n=58)

Mid ST2
Tertile (n=58)

High ST2
Tertile (n=58) P Value P Value*

ST2 range, ng/mL <29.5 29.5–38.5 >38.5 . . . . . .

ST2, ng/mL 23.8 (21.7–26.9) 34.3 (31.6–36.5) 51.1 (46.6–66.4) . . . . . .

Male 18 (31) 32 (55) 36 (62) 0.002 . . .

Age, y 67 (61–74) 71 (64–79) 69 (63–77) 0.16 0.30

Body mass index, kg/m2 32.9 (28.6–36.9) 32.5 (28.0–38.8) 33.8 (28.6–40.1) 0.54 0.70

Body surface area, m2 2.13 (1.95–2.23) 2.07 (1.89–2.39) 2.12 (1.95–2.29) 0.80 0.53

HF hospitalization 18 (31) 16 (28) 21 (36) 0.60 0.63

Comorbidities

Hypertension 44 (76) 56 (97) 46 (79) 0.005 0.023

Ischemic heart disease 20 (34) 20 (34) 27 (47) 0.30 0.50

Atrial fibrillation 21 (36) 30 (52) 34 (59) 0.047 0.049

COPD 8 (14) 11 (19) 13 (22) 0.48 0.77

Diabetes mellitus 17 (29) 19 (33) 35 (60) 0.001 0.005

Creatinine, mg/dL (n=172) 1.0 (0.8–1.3) 1.0 (0.9–1.2) 1.2 (0.9–1.7) 0.016 0.018

Cystatin-C, mg/L 1.15 (0.92–1.46) 1.21 (1.08–1.47) 1.58 (1.13–2.15) 0.0003 <0.0001

Medications

ACEI or ARB 40 (69) 41 (71) 35 (60) 0.45 0.36

Aldosterone antagonist 5 (9) 6 (10) 8 (14) 0.66 0.62

Beta blocker 40 (69) 42 (72) 45 (78) 0.57 0.80

Loop diuretic 36 (62) 43 (74) 51 (88) 0.006 0.013

Congestion and quality of life

NT-proBNP, pg/mL (n=173) 382 (94–656) 696 (356–1621) 955 (497–1802) <0.0001 <0.0001

Elevated JVP (n=168) 16 (28) 24 (44) 33 (59) 0.004 0.003

Moderate or severe edema 5 (9) 8 (14) 22 (38) 0.0006 0.0006

NYHA class II 35 (60) 26 (45) 24 (41) 0.09 0.029

MLHFQ score (n=166) 37 (30–63) 49 (35–65) 44 (25–60) 0.16 0.17

Values are median (interquartile range) or n (%). ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease;
HF, heart failure; JVP, jugular venous pressure; MLHFQ, Minnesota Living with Heart Failure Questionnaire; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart
Association; ST2, suppression of tumorigenicity 2.
*Adjusted for sex.
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New York Heart Association functional status have also been
reported in studies of ambulatory patients with HFrEF8,10,11

and the PARAMOUNT HFpEF cohort.35 Diabetes mellitus,
renal dysfunction, atrial fibrillation, and chronic venous
congestion are all linked to inflammation.41 It is perhaps
surprising that obesity was not associated with ST2 levels in

this cohort or in the PARAMOUNT HFpEF cohort,35 given a
previous study showing higher ST2 levels in severe obesity
and the known proinflammatory effect of obesity.42 However,
the intensity and types of inflammation linked to activation of
ST2 are not well defined.33 It is important to note that ST2
levels are not associated with renal function in the general

Table 2. Exercise Performance by Tertile of Baseline ST2 Levels

Low ST2 Tertile (n=58) Mid ST2 Tertile (n=58) High ST2 Tertile (n=58) P Value P Value*

Peak VO2, mL/kg per minute 12.1 (10.9–14.4) 11.9 (10.8–15.1) 11.2 (10.0–13.3) 0.12 0.017

Peak VO2, % predicted 44 (38–51) 42 (35–48) 39 (32–47) 0.024 0.017

Respiratory exchange ratio 1.11 (1.05–1.17) 1.09 (1.03–1.15) 1.09 (1.02–1.15) 0.41 0.41

Peak systolic BP, mm Hg 160 (140–184) 154 (138–168) 148 (126–168) 0.07 0.005

Rest HR, bpm 67 (59–76) 70 (60–75) 69 (61–79) 0.58 0.43

Peak HR, bpm 111 (96–136) 107 (91–120) 107 (91–128) 0.12 0.07

Chronotropic index 0.55 (0.38–0.71) 0.47 (0.29–0.62) 0.49 (0.28–0.69) 0.15 0.08

VE/VCO2 slope 31.7 (28.1–36.9) 33.8 (28.6–37.5) 34.9 (31.0–39.9) 0.06 0.20

6-minute walk distance, m 351 (265–434) 305 (244–372) 311 (230–360) 0.046 0.012

Total sample size with data (N=168–174). BP indicates blood pressure; bpm, beats per minute; HR, heart rate; ST2, suppression of tumorigenicity 2; VE/VCO2, ventilatory efficiency; VO2,
oxygen consumption.
*Adjusted for sex.

Table 3. Baseline Cardiac Structure and Function by Tertiles of Baseline ST2 Levels

N* Low ST2 Tertile (n=58) Mid ST2 Tertile (n=58) High ST2 Tertile (n=58) P Value P Value†

Diastolic function parameters

E/A ratio 118 1.4 (1.0–1.9) 1.3 (0.9–3.0) 1.6 (1.0–3.0) 0.70 0.68

Medial e0, m/s 160 0.06 (0.04–0.07) 0.07 (0.05–0.08) 0.06 (0.05–0.08) 0.56 0.77

Medial E/e0 155 14.9 (11.3–22.0) 15.0 (10.0–20.0) 17.9 (13.1–24.5) 0.17 0.14

Deceleration time, ms 159 192 (159–215) 180 (158–219) 181 (151–219) 0.86 0.97

LA volume/BSA, mL/m2 123 41 (33–50) 47 (34–62) 51 (35–62) 0.08 0.16

Left ventricular systolic function and geometry

Ejection fraction, % 173 61 (57–66) 61 (56–66) 60 (55–63) 0.29 0.47

LVEDd/BSA, cm/m2 133 2.3 (2.1–2.5) 2.2 (2.0–2.4) 2.2 (2.0–2.5) 0.58 0.91

Relative wall thickness 128 0.38 (0.34–0.44) 0.42 (0.36–0.52) 0.42 (0.37–0.46) 0.06 0.10

LV mass/BSA, g/m2 128 76 (64–85) 72 (61–89) 80 (60–100) 0.98 0.60

Right ventricular load and function

PASP, mm Hg 113 39 (32–48) 46 (34–58) 43 (32–51) 0.045 0.016

TAPSE, mm 172 19.0 (16.0–23.0) 17.5 (14.0–24.0) 16.0 (13.0–20.0) 0.013 0.015

Vascular function

Systolic BP, mm Hg 174 128 (114–140) 123 (113–137) 124 (112–131) 0.44 0.25

Diastolic BP, mm Hg 174 70 (64–80) 70 (62–78) 69 (62–78) 0.66 0.50

Ao distensibility, 10�3 mm Hg�1 68 1.21 (0.67–1.46) 1.08 (0.58–2.25) 1.09 (0.67–1.76) 0.77 0.50

Data are median (interquartile range). Ao indicates aortic; BP, blood pressure; BSA, body surface area; LA, left atrial; LV, left ventricular; LVEDd, left ventricular end-diastolic dimension;
PASP, pulmonary artery systolic pressure; ST2, suppression of tumorigenicity 2; TAPSE, tricuspid annular plane systolic excursion.
*Total sample with data.
†Adjusted for sex.
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population34 or elevated in a small sample of chronic kidney
disease patients without HF,33 suggesting a unique interac-
tion among HF, renal dysfunction, and ST2 levels.

Association of ST2 Levels With Functional
Capacity
In HFpEF, as in HFrEF, ST2 levels were associated with worse
exercise capacity. Because skeletal muscle function is a
potent determinant of peak oxygen consumption in HFpEF,25

this association may reflect effects of systemic inflammation
on skeletal muscle or peripheral vascular function, given the
lack of association of ST2 and resting LV structure and
function.

Association of ST2 Levels With Cardiac Structure
and Function

Although an association between ST2 and ventricular dys-
function was demonstrated in animal studies,4 a relationship
between circulating ST2 levels and the severity of cardiac
remodeling or dysfunction in clinical HF is less clear.8,35,43–45

In general population cohorts with a spectrum of LV
geometry and function, ST2 levels were not associated with
LV mass46 or ejection fraction47,48 but were associated with a
greater likelihood of asymptomatic diastolic dysfunction in
one study.47 In a diverse cohort of patients evaluated in an
emergency department for dyspnea and subsequently found
to have HFrEF, HFpEF, or noncardiac dyspnea, ST2 levels were

6 r = 0.33; p<0.0001

r = 0.33; p<0.0001

r = 0.30; p<0.0001

r = 0.04; p=0.58

r = 0.22; p=0.004

r = 0.15; p=0.055
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Figure 2. The relationship between suppression of tumorigenicity 2 (ST2) and biomarkers in heart failure
with preserved ejection fraction. ST2 was associated with endothelin 1, high-sensitivity C-reactive protein
(CRP), C-telopeptide for type I collagen (CITP), and troponin I but not aldosterone or pro–collagen III
N-terminal peptide (PIIINP) levels. *Adjusted for sex. Ln indicates log transformed.

DOI: 10.1161/JAHA.116.004382 Journal of the American Heart Association 6

ST2 in HFpEF AbouEzzeddine et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



higher in HF than noncardiac dyspnea and, across the
combined HF groups, were associated with LV ejection
fraction, RV systolic dysfunction, higher pulmonary artery
pressures, and more severe tricuspid regurgitation but not
with LV mass or diastolic function.43 In another study of
patients with acute dyspnea and normal ejection fraction
(most with noncardiac dyspnea), ST2 was not associated with
LV mass or most Doppler measures of diastolic function.44

ST2 levels were not meaningfully associated with LV remod-
eling in HFrEF.8 The PARAMOUNT analysis in HFpEF found a
modest association of ST2 levels with left atrial volumes but
no other parameter of cardiac structure or function, although
RV indices were not assessed.35

In the RELAX HFpEF cohort, we found no association
between LV structure or function and ST2 levels, whereas
NT-proBNP (of myocardial origin20) was strongly associated
with cardiac structure and function. The association of ST2
levels with RV function observed in this study may be related
to the impact of RV dysfunction on systemic venous
congestion and its known proinflammatory effects.29

Mechanism of ST2 Activation in HFpEF
We did not measure the transcardiac ST2 gradient, and thus
the systemic versus cardiac source of elevated levels of ST2
in HFpEF cannot be established in our study. The lack of a
relationship between ST2 and LV structure and function and
the associations between ST2 and proinflammatory comor-
bidities, severity of congestion, and biomarkers reflective of
systemic inflammation and fibrosis (high-sensitivity C-reactive
protein and C-telopeptide for type I collagen) and myocardial
injury or inflammation (high-sensitivity troponin I) may
implicate an extracardiac source of ST2 in HFpEF, as has
been established in HFrEF.17–20 Indeed, human saphenous
venous and arterial endothelial cells exposed to inflammatory
stimuli have been shown to secrete ST2,17,18,49 and we
speculate that that activation of ST2 reflects systemic
inflammation in HFpEF. Whether the inflammatory stimulus
putatively responsible for ST2 activation is mediated by
comorbidity-driven microvascular endothelial inflammation or
the systemic congestion and end-organ hypoperfusion com-
mon to advanced HFpEF or HFrEF is deserving of further
study.

Limitations
Given the post hoc nature of this study and its modest sample
size, this analysis was deemed to be exploratory with the aim
of generating hypotheses that could be tested in larger
mechanistic HFpEF studies. The RELAX cohort had relatively
advanced HFpEF,30,50 and this may limit correlations,
although the range of ST2 levels was fairly broad. Those

patients missing stored serum appeared to have more severe
HF; some associations may have been stronger if the entire
cohort had available serum. The association of ST2 levels and
outcomes was not assessed in RELAX, given the short
duration of follow-up.

Conclusion
In HFpEF, ST2 levels were elevated and associated with
proinflammatory comorbidities; RV pressure overload and
dysfunction; systemic congestion; exercise intolerance; and
biomarkers reflective of systemic inflammation and fibrosis,
neurohumoral activation, and myocardial injury but not with
LV structure and function. These data add to our understand-
ing of ST2 as a biomarker in HFpEF and suggest that systemic
inflammation may mediate or contribute to activation of ST2
in HFpEF.

Sources of Funding
This studywas supportedbygrants from theNationalHeart, Lung,
and Blood Institute: U01HL084904 (for the data coordinating
center), and U01HL084861, U01HL084875, U01HL084877,
U01HL084889, U01HL084890, U01HL084891, U01HL084899,
U01HL084907, andU01HL084931 (for the clinical centers). This
study was not supported by industry.

Disclosures
Dr Felker consults for Singulex, Roche Diagnostics, and
receives grant support from the National Institutes of Health
and Roche Diagnostics. Dr Chen reports that he and Mayo
Clinic have patented and licensed designer natriuretic
peptides to Anexon Inc and Capricor Therapeutics. Dr Chen
is the cofounder of Zumbro Discovery. Dr Braunwald receives
grant support to his institution from Duke University for his
role as chair of the National Heart, Lung, and Blood Institute–
sponsored Heart Failure Network. All others report no
disclosures relevant to this manuscript.

References
1. Bergers G, Reikerstorfer A, Braselmann S, Graninger P, Busslinger M.

Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA
isoforms coding for either secreted or membrane-bound proteins related to
the IL-1 receptor. EMBO J. 1994;13:1176–1188.

2. Pascual-Figal DA, Januzzi JL. The biology of ST2: the International ST2
Consensus Panel. Am J Cardiol. 2015;115:3B–7B.

3. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel
biomarker. Nat Rev Drug Discov. 2008;7:827–840.

4. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and
ST2 comprise a critical biomechanically induced and cardioprotective signaling
system. J Clin Invest. 2007;117:1538–1549.

5. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S,
Solomon SD, Rouleau JL, Lee RT. Expression and regulation of ST2, an

DOI: 10.1161/JAHA.116.004382 Journal of the American Heart Association 7

ST2 in HFpEF AbouEzzeddine et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



interleukin-1 receptor family member, in cardiomyocytes and myocardial
infarction. Circulation. 2002;106:2961–2966.

6. Manzano-Fernandez S, Mueller T, Pascual-Figal D, Truong QA, Januzzi JL.
Usefulness of soluble concentrations of interleukin family member ST2 as
predictor of mortality in patients with acutely decompensated heart failure
relative to left ventricular ejection fraction. Am J Cardiol. 2011;107:259–267.

7. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, McMurray JJ,
Wikstrand J, Cleland JG, Aukrust P, Gullestad L. Soluble ST2 is associated with
adverse outcome in patients with heart failure of ischaemic aetiology. Eur J
Heart Fail. 2012;14:268–277.

8. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of
soluble ST2 in the Valsartan Heart Failure Trial. Circ Heart Fail. 2014;7:418–
426.

9. Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin
family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol.
2008;52:1458–1465.

10. Felker GM, Fiuzat M, Thompson V, Shaw LK, Neely ML, Adams KF, Whellan DJ,
Donahue MP, Ahmad T, Kitzman DW, Pi~na IL, Zannad F, Kraus WE, O’Connor
CM. Soluble ST2 in ambulatory patients with heart failure: association with
functional capacity and long-term outcomes. Circ Heart Fail. 2013;6:1172–
1179.

11. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, Dries DL, Tang
WH, Wu AH, Fang JC, Boxer R, Sweitzer NK, Levy WC, Goldberg LR, Jessup M,
Cappola TP. High-sensitivity ST2 for prediction of adverse outcomes in chronic
heart failure. Circ Heart Fail. 2011;4:180–187.

12. Bayes-Genis A, de Antonio M, Galan A, Sanz H, Urrutia A, Cabanes R, Cano L,
Gonz�alez B, D�ıez C, Pascual T, Elos�ua R, Lup�on J. Combined use of high-
sensitivity ST2 and NTproBNP to improve the prediction of death in heart
failure. Eur J Heart Fail. 2012;14:32–38.

13. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, Maisel AS, Fitzgerald
RL. Serial sampling of ST2 predicts 90-day mortality following destabilized
heart failure. J Card Fail. 2008;14:732–738.

14. Maisel A, Xue Y, van Veldhuisen DJ, Voors AA, Jaarsma T, Pang PS, Butler J, Pitt
B, Clopton P, de Boer RA. Effect of spironolactone on 30-day death and heart
failure rehospitalization (from the COACH Study). Am J Cardiol.
2014;114:737–742.

15. Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL,
O’Donoghue M, Sakhuja R, Chen AA, van Kimmenade RR, Lewandrowski KB,
Lloyd-Jones DM, Wu AH. Measurement of the interleukin family member ST2 in
patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic
Peptide Investigation of Dyspnea in the Emergency Department) study. J Am
Coll Cardiol. 2007;50:607–613.

16. Pascual-Figal DA, Manzano-Fernandez S, Boronat M, Casas T, Garrido IP,
Bonaque JC, Pastor-Perez F, Vald�es M, Januzzi JL. Soluble ST2, high-sensitivity
troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role
for risk stratification in acutely decompensated heart failure. Eur J Heart Fail.
2011;13:718–725.

17. Chen WY, Hong J, Gannon J, Kakkar R, Lee RT. Myocardial pressure overload
induces systemic inflammation through endothelial cell IL-33. Proc Natl Acad
Sci USA. 2015;112:7249–7254.

18. Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest B,
Croes R, Verstreken S, Goethals M, de Raedt H, Sarma J, Joseph L,
Vanderheyden M, Weinberg EO. Nonmyocardial production of ST2 protein in
human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol.
2008;52:2166–2174.

19. Truong QA, Januzzi JL, Szymonifka J, Thai WE, Wai B, Lavender Z, Sharma U,
Sandoval RM, Grunau ZS, Basnet S, Babatunde A, Ajijola OA, Min JK, Singh JP.
Coronary sinus biomarker sampling compared to peripheral venous blood for
predicting outcomes in patients with severe heart failure undergoing cardiac
resynchronization therapy: the BIOCRT study. Heart Rhythm. 2014;11:2167–
2175.

20. Kaye DM, Mariani JA, van Empel V, Maeder MT. Determinants and implications
of elevated soluble ST2 levels in heart failure. Int J Cardiol. 2014;176:1242–
1243.

21. Paulus WJ, Tsch€ope C. A novel paradigm for heart failure with preserved
ejection fraction: comorbidities drive myocardial dysfunction and remodeling
through coronary microvascular endothelial inflammation. J Am Coll Cardiol.
2013;62:263–271.

22. Haykowsky MJ, Brubaker PH, Morgan TM, Kritchevsky S, Eggebeen J, Kitzman
DW. Impaired aerobic capacity and physical functional performance in older
heart failure patients with preserved ejection fraction: role of lean body mass.
J Gerontol A Biol Sci Med Sci. 2013;68:968–975.

23. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM,
Haykowsky M. Skeletal muscle abnormalities and exercise intolerance in older
patients with heart failure and preserved ejection fraction. Am J Physiol Heart
Circ Physiol. 2014;306:H1364–H1370.

24. Haykowsky MJ, Tomczak CR, Scott JM, Paterson DI, Kitzman DW. Determi-
nants of exercise intolerance in patients with heart failure and reduced or
preserved ejection fraction. J Appl Physiol (1985). 2015;119:739–744.

25. Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner
RB, Houstis NE, Eisman AS, Hough SS, Lewis GD. Mechanisms of exercise
intolerance in heart failure with preserved ejection fraction: the role of
abnormal peripheral oxygen extraction. Circ Heart Fail. 2015;8:286–294.

26. Yndestad A, Marshall AK, Hodgkinson JD, Tham el L, Sugden PH, Clerk A.
Modulation of interleukin signalling and gene expression in cardiac myocytes
by endothelin-1. Int J Biochem Cell Biol. 2010;42:263–272.

27. Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, Baker AH, McInnes IB,
Liew FY. IL-33 reduces the development of atherosclerosis. J Exp Med.
2008;205:339–346.

28. Paulus WJ. Cytokines and heart failure. Heart Fail Monit. 2000;1:50–56.

29. Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, Elsner
S, Sliziuk V, Scherbakov N, Mur�ın J, Anker SD, Sandek A. Intestinal congestion
and right ventricular dysfunction: a link with appetite loss, inflammation, and
cachexia in chronic heart failure. Eur Heart J. 2016;37:1684–1691.

30. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, LeWinter
MM, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili
EO, O’Connor CM, Felker GM, Goldsmith SR, Bart BA, McNulty SE, Ibarra JC, Lin
G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF,
Mascette AM, Braunwald E; RELAX Trial. Effect of phosphodiesterase-5
inhibition on exercise capacity and clinical status in heart failure with preserved
ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–1277.

31. Redfield MM, Borlaug BA, Lewis GD, Mohammed SF, Semigran MJ, Lewinter
MM, Deswal A, Hernandez AF, Lee KL, Braunwald E; Heart Failure Clinical
Research Network. PhosphdiesteRasE-5 Inhibition to Improve CLinical Status
and EXercise Capacity in Diastolic Heart Failure (RELAX) trial: rationale and
design. Circ Heart Fail. 2012;5:653–659.

32. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard
MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS,
Stewart WJ; Chamber Quantification Writing Group; American Society of
Echocardiography’s Guidelines and Standards Committee; European Associ-
ation of Echocardiography. Recommendations for chamber quantification: a
report from the American Society of Echocardiography’s Guidelines and
Standards Committee and the Chamber Quantification Writing Group,
developed in conjunction with the European Association of Echocardiography,
a branch of the European Society of Cardiology. J Am Soc Echocardiogr.
2005;18:1440–1463.

33. Dieplinger B, Januzzi JL Jr, Steinmair M, Gabriel C, Poelz W, Haltmayer M,
Mueller T. Analytical and clinical evaluation of a novel high-sensitivity assay for
measurement of soluble ST2 in human plasma—the Presage ST2 assay. Clin
Chim Acta. 2009;409:33–40.

34. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL, Cheng S,
Fradley MG, Kretschman D, Gao W, O’Connor G, Wang TJ, Januzzi JL.
Distribution and clinical correlates of the interleukin receptor family member
soluble ST2 in the Framingham Heart Study. Clin Chem. 2012;58:1673–1681.

35. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA, Prescott MF, Shi V,
Lefkowitz M, McMurray JJ, Solomon SD; Prospective Comparison of ARNI With
ARB on Management of Heart Failure With Preserved Ejection Fraction
(PARAMOUNT) Investigators. Plasma biomarkers reflecting profibrotic processes
in heart failure with a preserved ejection fraction: data from the prospective
comparison of ARNI with ARB on management of heart failure with preserved
ejection fraction study. Circ Heart Fail. 2016;9:e002551. [Epub ahead of print].

36. Mueller T, Jaffe AS. Soluble ST2—analytical considerations. Am J Cardiol.
2015;115:8B–21B.

37. Dieplinger B, Egger M, Haltmayer M, Kleber ME, Scharnagl H, Silbernagel G, de
Boer RA, Maerz W, Mueller T. Increased soluble ST2 predicts long-term
mortality in patients with stable coronary artery disease: results from the
Ludwigshafen Risk and Cardiovascular Health Study. Clin Chem.
2014;60:530–540.

38. Kohli P, Bonaca MP, Kakkar R, Kudinova AY, Scirica BM, Sabatine MS, Murphy
SA, Braunwald E, Lee RT, Morrow DA. Role of ST2 in non-ST-elevation acute
coronary syndrome in the MERLIN-TIMI 36 trial. Clin Chem. 2012;58:257–266.

39. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola VP, van
Kimmenade R, Pathak A, Mueller T, Disomma S, Metra M, Pascual-Figal D,
Laribi S, Logeart D, Nouira S, Sato N, Potocki M, Parenica J, Collet C, Cohen-
Solal A, Januzzi JL Jr, Mebazaa A; GREAT-Network. Incremental value of
biomarkers to clinical variables for mortality prediction in acutely decompen-
sated heart failure: the Multinational Observational Cohort on Acute Heart
Failure (MOCA) study. Int J Cardiol. 2013;168:2186–2194.

40. Bajwa EK, Volk JA, Christiani DC, Harris RS, Matthay MA, Thompson BT, Januzzi
JL; National Heart, Lung and Blood Institute Acute Respiratory Distress
Syndrome Network. Prognostic and diagnostic value of plasma soluble
suppression of tumorigenicity-2 concentrations in acute respiratory distress
syndrome. Crit Care Med. 2013;41:2521–2531.

DOI: 10.1161/JAHA.116.004382 Journal of the American Heart Association 8

ST2 in HFpEF AbouEzzeddine et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



41. Luscher TF. Heart failure and comorbidities: renal failure, diabetes, atrial
fibrillation, and inflammation. Eur Heart J. 2015;36:1415–1417.

42. Zeyda M, Wernly B, Demyanets S, Kaun C, H€ammerle M, Hantusch B, Schranz
M, Neuhofer A, Itariu BK, Keck M, Prager G, Wojta J, Stulnig TM. Severe obesity
increases adipose tissue expression of interleukin-33 and its receptor ST2,
both predominantly detectable in endothelial cells of human adipose tissue. Int
J Obes (Lond). 2013;37:658–665.

43. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Serum
levels of the interleukin-1 receptor family member ST2, cardiac structure and
function, and long-term mortality in patients with acute dyspnea. Circ Heart
Fail. 2009;2:311–319.

44. Shah KB, Kop WJ, Christenson RH, Diercks DB, Henderson S, Hanson K, Li SY,
deFilippi CR. Prognostic utility of ST2 in patients with acute dyspnea and
preserved left ventricular ejection fraction. Clin Chem. 2011;57:874–882.

45. Daniels LB, Clopton P, Iqbal N, Tran K, Maisel AS. Association of ST2 levels
with cardiac structure and function and mortality in outpatients. Am Heart J.
2010;160:721–728.

46. Xanthakis V, Larson MG, Wollert KC, Aragam J, Cheng S, Ho J, Coglianese E,
Levy D, Colucci WS, Michael Felker G, Benjamin EJ, Januzzi JL, Wang TJ, Vasan

RS. Association of novel biomarkers of cardiovascular stress with left
ventricular hypertrophy and dysfunction: implications for screening. J Am Heart
Assoc. 2013;2:e000399. DOI: 10.1161/JAHA.113.000399.

47. Seliger SL, Ginsberg E, Gottdiener J, Christenson R, DeFilippi C. Soluble ST2
and galectin-3 are associated with subclinical diastolic dysfunction in older
adults. Paper presented at: American College of Cardiology (ACC) Scientific
Sessions; March 29, 2014; Washington, DC.

48. Chen LQ, de Lemos JA, Das SR, Ayers CR, Rohatgi A. Soluble ST2 is associated
with all-cause and cardiovascular mortality in a population-based cohort: the
Dallas Heart Study. Clin Chem. 2013;59:536–546.

49. Demyanets S, Kaun C, Pentz R, Krychtiuk KA, Rauscher S, Pfaffenberger S,
Zuckermann A, Aliabadi A, Gr€oger M, Maurer G, Huber K, Wojta J. Components
of the interleukin-33/ST2 system are differentially expressed and regulated in
human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol.
2013;60:16–26.

50. Kelly JP, Mentz RJ, Mebazaa A, Voors AA, Butler J, Roessig L, Fiuzat M,
Zannad F, Pitt B, O’Connor CM, Lam CS. Patient selection in heart failure
with preserved ejection fraction clinical trials. J Am Coll Cardiol.
2015;65:1668–1682.

DOI: 10.1161/JAHA.116.004382 Journal of the American Heart Association 9

ST2 in HFpEF AbouEzzeddine et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

https://doi.org/10.1161/JAHA.113.000399


 

 

 

 

 

 

SUPPLEMENTAL MATERIAL 
 

 



Table S1. Characteristics of patients with or without stored serum for ST2 levels 
 
 

 
Have ST2 
(n=174) 

Missing ST2 
(n=42) 

p-value 

Male 86 (49) 26 (62) 0.15 

Age, y 68 (62 - 77) 70 (62 - 80) 0.41 

Body Mass Index, Kg/m2 32.9 (28.4 – 38.8) 33.6 (27.9 – 40.9) 0.79 

Body Surface Area, m2 2.11 (1.94 - 2.29) 2.10 (1.88 - 2.33) 0.74 

HF hospitalization 55 (32) 24 (57) 0.002 

Comorbidities    

Hypertension 146 (84) 37 (88) 0.50 

Ischemic heart disease 67 (39) 17 (40) 0.81 

Atrial fibrillation 85 (49) 26 (62) 0.13 

COPD 32 (18) 10 (24) 0.43 

Diabetes mellitus 71 (41) 22 (52) 0.17 

Creatinine, mg/dl  1.1 (0.8 - 1.3) 1.3 (0.9 - 1.7) 0.005 

Cystatin-C, mg/l 1.25 (1.04 - 1.66) 1.65 (1.19 - 1.95) 0.005 

Medications     

ACE inhibitor or ARB  116 (67) 36 (86) 0.015 

Aldosterone antagonist 19 (11) 4 (10) 1.00 

Beta blocker  127 (73) 37 (88) 0.039 

Loop diuretic 130 (75) 36 (86) 0.13 

Congestion and Quality of Life 

NT-proBNP, pg/ml 633 (219-1372) 1334 (499 – 2350) 0.004 

Elevated JVP  (n=209) 73 (43) 22 (54) 0.69 

≥ Moderate edema 35 (20) 9 (21) 0.45 

NYHA class II  85 (49) 16 (38) 0.21 

MLHFQ Score  43 (30 - 63) 45 (22 - 58) 0.69 

 
Abbreviations: ACE, Angiotensin Converting Enzyme; ARB, Angiotensin Receptor 
Blocker; COPD, Chronic Obstructive Pulmonary Disease; HF, Heart Failure; NT-
proBNP, N-terminal pro-brain natriuretic peptide; JVP, Jugular Venous Pressure; 
MLHFQ, Minnesota Living with Heart Failure Questionnaire; NYHA, New York Heart 
Association 



Table S2. Association of ST2 with LV systolic function and geometry by cardiac magnetic resonance imaging 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Data are median (IQR); * total N with data; † Adjusted for sex  

Abbreviations: LV, Left Ventricle; LVEDV, Left Ventricular End Diastolic Volume  

 
N* 

Low ST2 Tertile 

(n=58) 

Mid ST2 Tertile 

(n=58) 

High ST2 Tertile 

(n=58) 
p-value 

p-
value† 

CMRI        

Ejection fraction, % 96 67 (62 - 71) 65 (58 - 70) 67 (53 - 70) 0.54 0.53 

LVEDV / BSA, ml/ m2 96 54 (46 - 63) 55 (43 - 64) 53 (46 - 66) 1.00 0.93 

LV mass/LV volume, g/ml 96 1.05 (0.87 - 1.31) 1.23 (1.00 - 1.71) 1.17 (0.99 - 1.32) 0.07 0.36 

LV mass/BSA, g/m2 96 56 (52 - 65) 69 (53 - 84) 62 (56 - 79) 0.06 0.29 



Table S3. Association of NT-proBNP levels with cardiac structure and function 

 

 NT-proBNP*  

 N 
Parameter estimate 

per log unit 
Unadjusted 

p-value  

Diastolic function parameters 

Log-transformed E/A ratio 117 0.21637 <0.0001  

Log-transformed Medial E/e’ 154 0.16177 <0.0001  

Deceleration time, ms 158 -9.28482 0.0004  

LA volume/BSA, ml/m2 122 6.99614 <0.0001  

LV structure and systolic function 

Ejection fraction   172 -0.32805 0.45  

Log-transformed relative wall 
thickness 

127 0.04831 0.003  

LV mass/BSA, g/m2 (echo) 127 3.94840 0.041  

Right ventricular load and function 

PASP, mmHg 112 2.70231 0.005  

TAPSE, mm 171 -2.03747 <0.0001  

 

 

* Linear regression model with the imaging measure as the dependent variable and log-transformed NT-proBNP as the 
independent variable. 
 
 
Abbreviations: LA, Left Atrium; LV, Left Ventricle; PASP, Pulmonary Artery Systolic Pressure; TAPSE, Tricuspid Annular 
Plane Systolic Excursion 
 
 

 
 
 
 


