28 research outputs found

    Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND)

    Get PDF
    A protocol was developed to extract, fractionate, and quantitatively analyze periphyton extracellular polymeric substances (EPS), which obtains both information on the molecular weight (M r) distribution and protein and polysaccharide content. The EPS were extracted from freshwater periphyton between July and December 2011. Organic carbon (OC) compounds from different EPS extracts were analyzed using liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND), and total protein and polysaccharide content were quantified. Four distinct OC fractions, on the basis of M r, were identified in all extracts, corresponding to high M r biopolymers (≥80-4kDa), degradation products of humic substances (M r not available), low M r acids (10-0.7kDa), and small amphiphilic/neutral compounds (3-0.5kDa). Low C/N ratios (4.3 ± 0.8) were calculated for the biopolymer fractions, which represented 16-38% of the measured dissolved organic carbon (DOC), indicating a significant presence of high M r proteins in the EPS. Protein and polysaccharide represented the two major components of EPS and, when combined, accounted for the measured DOC in extracts. Differences in specific OC fractions of EPS extracts over the course of the study could be quantified using this method. This study suggests that LC-OCD-OND is a new valuable tool in EPS characterization of periphyto

    Mechanisms of membrane fouling during ultra-low pressure ultrafiltration

    No full text
    Gravity-driven, dead-end ultrafiltration of surface water, performed at ultra-low pressures without backflushing, cross-flow or chemical cleaning, results in flux stabilization during extended periods of time. This principle can be used for direct ultrafiltration of surface water without an external energy supply and low maintenance for decentralized drinking-water treatment. Here we investigate the mechanisms of membrane fouling and flux stabilization during gravity-driven, ultra low-pressure UF (ULP-UF). The impact of natural organic matter on the structure and resistance of the fouling layer is studied for different types of water, namely river water, pre-treated river water, river water with addition of sodium azide, aerobic diluted wastewater, diluted wastewater with a low dissolved oxygen content and river water spiked with humic acids or kaolin. Our results show that the deposition of non-dissolved material, biologically induced structural changes in the fouling layer and development of irremovable fouling are three major processes determining the fouling and flux stabilization in ULP-UF. The biologically induced structural changes in the fouling layer lead to heterogeneous structures and channel networks there and cause a decrease of the specific resistance of this layer over time. Flux stabilization occurs when the decrease of the resistance due to structural changes in the fouling layer balances the increase of resistance due to deposition and irremovable fouling

    Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection

    No full text
    Dissolved organic nitrogen (DON) can act as a precursor of nitrogenous disinfection byproducts during oxidative water treatment. Quantification and characterization of DON are still challenging for waters with high concentrations of dissolved inorganic nitrogen (DIN, including ammonia, nitrate and nitrite) relative to total dissolved nitrogen (TDN) due to the cumulative analytical errors of independently measured nitrogen species (i.e., DON = TDN - NO2- - NO3- - NH4+/NH3) and interference of DIN species to TDN quantification. In this study, a novel electrodialysis (ED)-based treatment for selective DIN removal was developed and optimized with respect to type of ion-exchange membrane, sample pH, and ED duration. The optimized ED method was then coupled with size-exclusion chromatography with organic carbon, UV, and nitrogen detection (SEC-OCD-ND) for advanced DON analysis in wastewater effluents. Among the tested ion-exchange membranes, the PC-AR anion- and CMT cation-exchange membranes showed the lowest DOC loss (1-7%) during ED treatment of a wastewater effluent at ambient pH (8.0). A good correlation was found between the decrease of the DIN/TDN ratio and conductivity. Therefore, conductivity has been adopted as a convenient way to determine the optimal duration of the ED treatment. In the pH range of 7.0-8.3, ED treatment of various wastewater effluents with the PC-AR/CMT membranes showed that the relative residual conductivity could be reduced to less than 0.50 (DIN removal >90%; DIN/TDN ratio 10%). In addition, the ED method is shorter (0.5 h) than the previous methods (>1-24 h). The relative residual conductivity was further reduced to similar to 0.20 (DIN removal >95%; DIN/TDN ratio <= 0.35) by increasing the ED duration to 0.7 h (DOC loss = 8%) for analysis by SEC-OCD-ND, which provided new information on distribution and ratio of organic carbon and nitrogen in different molecular weight fractions of effluent organic matter. (C) 2013 Elsevier Ltd. All rights reserved

    Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga

    No full text
    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of –OH and –COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M–EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations

    Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate

    No full text
    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 mu g/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield similar to 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. (C) 2010 Elsevier Ltd. All rights reserved

    Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents

    No full text
    The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 mu m). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. (C) 2009 Elsevier Ltd. All rights reserved

    Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection–organic nitrogen detection (LC-OCD-OND)

    Get PDF
    A protocol was developed to extract, fractionate, and quantitatively analyze periphyton extracellular polymeric substances (EPS), which obtains both information on the molecular weight (M r) distribution and protein and polysaccharide content. The EPS were extracted from freshwater periphyton between July and December 2011. Organic carbon (OC) compounds from different EPS extracts were analyzed using liquid chromatography-organic carbon detection–organic nitrogen detection (LC-OCD-OND), and total protein and polysaccharide content were quantified. Four distinct OC fractions, on the basis of M r, were identified in all extracts, corresponding to high M r biopolymers (≥80–4 kDa), degradation products of humic substances (M r not available), low M r acids (10–0.7 kDa), and small amphiphilic/neutral compounds (3–0.5 kDa). Low C/N ratios (4.3 ± 0.8) were calculated for the biopolymer fractions, which represented 16–38 % of the measured dissolved organic carbon (DOC), indicating a significant presence of high M r proteins in the EPS. Protein and polysaccharide represented the two major components of EPS and, when combined, accounted for the measured DOC in extracts. Differences in specific OC fractions of EPS extracts over the course of the study could be quantified using this method. This study suggests that LC-OCD-OND is a new valuable tool in EPS characterization of periphyton.ISSN:0944-1344ISSN:1614-749

    Evaluation of conceptual model and predictors of faecal sludge dewatering performance in Senegal and Tanzania

    No full text
    Unpredictable dewatering performance is a barrier to the effective management and treatment of faecal sludge. While mechanisms of dewatering in sludges from wastewater treatment are well understood, it is not clear how dewatering of faecal sludge fits into the framework of existing knowledge. We evaluate physical-chemical parameters, including EPS and cations, and demographic (source), environmental (microbial community), and technical factors (residence time) as possible predictors of dewatering performance in faecal sludge, and make comparisons to the existing conceptual model for wastewater sludge. Faecal sludge from public toilets took longer to dewater than sludge from other sources, and had turbid supernatant after settling. Slow dewatering and turbid supernatant corresponded to high EPS and monovalent cation concentrations, conductivity, and pH, but cake solids after dewatering was not correlated with EPS or other factors. Faecal sludges with higher EPS appeared less stabilised than those with lower EPS, potentially a result of inhibition of biological degradation due to high urine concentrations. However, distinct microbial community compositions were also observed in samples with higher and lower EPS concentrations. Higher EPS faecal sludge was comparable in dewatering behaviour and EPS content to anaerobically digested and primary wastewater sludges. However lower EPS faecal sludges had different dewatering behaviour than wastewater sludges and may be governed by different mechanisms.ISSN:0043-1354ISSN:1879-244

    Gravity-driven membrane filtration with compact second-life modules daily backwashed: An alternative to conventional ultrafiltration for centralized facilities

    No full text
    Gravity-driven membrane (GDM) filtration is a strategic alternative to conventional ultrafiltration (UF) for the resilient production of drinking water via ultrafiltration when resources become scarce, given the low dependency on energy and chemicals, and longer membrane lifetime. Implementation at large scale requires the use of compact and low-cost membrane modules with high biopolymer removal capacity. We therefore evaluated (1) to what extent stable flux can be obtained with compact membrane modules, i.e., inside-out hollow fiber membranes, and frequent gravity-driven backwash, (2) whether we can reduce membrane expenses by effectively utilizing second-life UF modules, i.e., modules that have been discarded by treatment plant operators because they are no longer under warranty, (3) if biopolymer removal could be maintained when applying a frequent backwash and with second-life modules and (4) which GDM filtration scenarios are economically viable compared to conventional UF, when considering the influence of new or second-life modules, membrane lifetime, stable flux value and energy pricing. Our findings showed that it was possible to maintain stable fluxes around 10 L/m2/h with both new and second-life modules for 142 days, but a daily gravity-driven backwash was necessary and sufficient to compensate the continuous flux drop observed with compact modules. In addition, the backwash did not affect the biopolymer removal. Costs calculations revealed two significant findings: (1) using second-life modules made GDM filtration membrane investment less expensive than conventional UF, despite the higher module requirements for GDM filtration and (2) overall costs of GDM filtration with a gravity-driven backwash were unaffected by energy prices rise, while conventional UF costs rose significantly. The later increased the number of economically viable GDM filtration scenarios, including scenarios with new modules. In summary, we proposed an approach that could make GDM filtration in centralized facilities feasible and increase the range of UF operating conditions to better adapt to increasing environmental and societal constraints.ISSN:2589-914
    corecore