11 research outputs found

    Drug dosage for microneedle-based transdermal drug delivery systems utilizing evaporation-induced droplet transport

    No full text
    We present a setup for directed loading of standard microneedle arrays for transdermal drug delivery with the respective therapeutic agent. The necessity to dose medical drugs according to their particular utilization requires an exact volumetric measure of the particular drug, which is usually provided as a liquid. This is achieved by arranging a metallic plate above the array featuring a set of holes aligned with the microneedles underneath. The plate is coated with a superhydrophobic layer. To initiate the filling, droplets are deposited on said holes, where the volume needs to be above the desired load for an individual needle, but the exact dosage is not required. Evaporation of these sessile droplets, after some time, leads to the falling of the droplets through the microfluidic plate, delivering an exact amount of liquid drug to the needles underneath. The proposed setup is easy to implement and parallelize, assisting in the task of accurate and high throughput coating of microneedle-based transdermal drug delivery devices.(VLID)435213

    An open microfluidic design for contact angle measurement

    No full text
    Spontaneous capillary flow in open microchannels is a phenomenon driven by surface energies. The contact angle that the liquid forms with the channel's substrate material and the cross-section of the microchannel decide whether liquid from a connected reservoir will automatically fill the channel or not. In this work we show how this behavior can be used to design a passive contact angle measurement device (CAMD) based on parabolic open microgrooves. To that end, we present a theory of open capillary flow in such microgrooves and compare the results to minimal energy surface simulations. Additionally, we discuss that the condition for capillary flow of curved microchannels is essentially equal to the condition for their straight counterparts having the same cross-section.Lastly, we present two demonstrators of our CAMD made out of micromilled poly(methyl methacrylate). The devices consist of five open microchannels with different cross-sections which are connected to a common liquid reservoir. We show how the behavior of a liquid placed into that reservoir can be used to evaluate the contact angle between the liquid and the substrate material. A comparison to conventional contact angle goniometry shows that our approach is able to successfully estimate contact angles with an accuracy of 10° by design which can be improved by employing a greater number of microchannels. Since our devices were automatically designed and can be tuned to specific applications, this provides an easy approach to include contact angle measurement into existing lab-on-a-chip devices

    Balanced torsionally oscillating pipe used as a viscosity sensor

    No full text
    We present a robust viscosity measurement system based on a torsionally oscillating pipe. The sensitive surface of the sensor performs periodic movements in the fluid to be sensed, generating a shear wave that penetrates the fluid. Due to this interaction, the resonance characteristic of the structure is affected, in particular the quality factor decreases with increasing viscosity. The pipe is mounted at its center where it features a nodal point of the preferred resonant mode, reducing temperature issues while simultaneously enabling high quality factors. A mathematical model is presented illustrating how different parameters influence the sensitivity of the sensor. Long-term measurements were performed to demonstrate the time stability of the sensor setup.(VLID)341185

    Fluidic and mechanical thermal control devices

    Get PDF
    In recent years, intensive studies on thermal control devices have been conducted for the thermal management of electronics and computers as well as for applications in energy conversion, chemistry, sensors, buildings, and outer space. Conventional cooling or heating techniques realized using traditional thermal resistors and capacitors cannot meet the thermal requirements of advanced systems. Therefore, new thermal control devices are being investigated to satisfy these requirements. These devices include thermal diodes, thermal switches, thermal regulators, and thermal transistors, all of which manage heat in a manner analogous to how electronic devices and circuits control electricity. To design or apply these novel devices as well as thermal control principles, this paper presents a systematic and comprehensive review of the state-of-the-art of fluidic and mechanical thermal control devices that have already been implemented in various applications for different size scales and temperature ranges. Operation principles, working parameters, and limitations are discussed and the most important features for a particular device are identified
    corecore