29 research outputs found
Phase noise due to vibrations in Mach-Zehnder atom interferometers
Atom interferometers are very sensitive to accelerations and rotations. This
property, which has some very interesting applications, induces a deleterious
phase noise due to the seismic noise of the laboratory and this phase noise is
sufficiently large to reduce the fringe visibility in many experiments. We
develop a model calculation of this phase noise in the case of Mach-Zehnder
atom interferometers and we apply this model to our thermal lithium
interferometer. We are able to explain the observed phase noise which has been
detected through the rapid dependence of the fringe visibility with the
diffraction order. We think that the dynamical model developed in the present
paper should be very useful to reduce the vibration induced phase noise in atom
interferometers, making many new experiments feasible
First measurements of the index of refraction of gases for lithium atomic waves
We report here the first measurements of the index of refraction of gases for
lithium waves. Using an atom interferometer, we have measured the real and
imaginary part of the index of refraction for argon, krypton and xenon, as
a function of the gas density for several velocities of the lithium beam. The
linear dependence of with the gas density is well verified. The total
collision cross-section deduced from the imaginary part is in very good
agreement with traditional measurements of this quantity. Finally, as predicted
by theory, the real and imaginary parts of and their ratio
exhibit glory oscillations
Atom interferometry measurement of the electric polarizability of lithium
Using an atom interferometer, we have measured the static electric
polarizability of Li m atomic units with a 0.66% uncertainty. Our experiment, which
is similar to an experiment done on sodium in 1995 by D. Pritchard and
co-workers, consists in applying an electric field on one of the two
interfering beams and measuring the resulting phase-shift. With respect to D.
Pritchard's experiment, we have made several improvements which are described
in detail in this paper: the capacitor design is such that the electric field
can be calculated analytically; the phase sensitivity of our interferometer is
substantially better, near 16 mrad/; finally our interferometer is
species selective it so that impurities present in our atomic beam (other
alkali atoms or lithium dimers) do not perturb our measurement. The extreme
sensitivity of atom interferometry is well illustrated by our experiment: our
measurement amounts to measuring a slight increase of the atom
velocity when it enters the electric field region and our present
sensitivity is sufficient to detect a variation .Comment: 14 page
Test of the isotopic and velocity selectivity of a lithium atom interferometer by magnetic dephasing
A magnetic field gradient applied to an atom interferometer induces a
-dependent phase shift which results in a series of decays and revivals of
the fringe visibility. Using our lithium atom interferometer based on Bragg
laser diffraction, we have measured the fringe visibility as a function of the
applied gradient. We have thus tested the isotopic selectivity of the
interferometer, the velocity selective character of Bragg diffraction for
different diffraction orders as well as the effect of optical pumping of the
incoming atoms. All these observations are qualitatively understood but a
quantitative analysis requires a complete model of the interferometer
Parallel Temperatures in Supersonic Beams: Ultra Cooling of Light Atoms seeded in a Heavier Carrier Gas
We have found recently that, in a supersonic expansion of a mixture of two
monoatomic gases, the parallel temperatures of the two gases can be very
different. This effect is large if the seeded gas is highly diluted and if its
atomic mass is considerably smaller than the one of the carrier gas. In the
present paper, we present a complete derivation of our theoretical analysis of
this effect. Our calculation is a natural extension of the existing theory of
supersonic cooling to the case of a gas mixture, in the high dilution limit.
Finally, we describe a set of temperature measurements made on a beam of
lithium seeded in argon. Our experimental results are in very good agreement
with the results of our calculation.Comment: 24 novembre 200
Anomalous cooling of the parallel velocity in seeded beams
We have measured the parallel velocity distribution of a lithium supersonic
beam produced by seeding lithium in argon. The parallel temperature for lithium
is considerably lower than the calculated parallel temperature of the argon
carrier gas. We have extended the theory of supersonic cooling to calculate the
parallel temperature of the seeded gas, in the limit of high dilution. The
theoretical result thus obtained is in good agreement with ourobservations.Comment: 01 june 200
Optimization of a Langmuir-Taylor detector for lithium
This paper describes the construction and optimization of a Langmuir-Taylor
detector for lithium, using a rhenium ribbon. The absolute detection
probability of this very sensitive detector is measured and the dependence of
this probability with oxygen pressure and surface temperature is studied.
Sources of background signal and their minimization are also discussed in
details. And a comparison between our data concerning the response time of the
detector and literature values is given. A theoretical analysis has been made:
this analysis supports the validity of the Saha-Langmuir law to relate the
ionization probability to the work function. Finally, the rapid variations of
the work function with oxygen pressure and temperature are explained by a
chemical equilibrium model.Comment: 11 pages, 7 figures, to appear in Rev. Sci. Instru
The BMV experiment : a novel apparatus to study the propagation of light in a transverse magnetic field
In this paper, we describe in detail the BMV (Bir\'efringence Magn\'etique du
Vide) experiment, a novel apparatus to study the propagation of light in a
transverse magnetic field. It is based on a very high finesse Fabry-Perot
cavity and on pulsed magnets specially designed for this purpose. We justify
our technical choices and we present the current status and perspectives.Comment: To be published in the European Physical Journal
An all-solid-state laser source at 671 nm for cold atom experiments with lithium
We present an all solid-state narrow line-width laser source emitting
output power at delivered in a
diffraction-limited beam. The \linebreak source is based on a
fre-quency-doubled diode-end-linebreak pumped ring laser operating on the
transition in Nd:YVO. By using
periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up
cavity, doubling efficiencies of up to 86% are obtained. Tunability of the
source over is accomplished. We demonstrate the suitability of
this robust frequency-stabilized light source for laser cooling of lithium
atoms. Finally a simplified design based on intra-cavity doubling is described
and first results are presented