34 research outputs found

    Scaling of stiffness energy for 3d +/-J Ising spin glasses

    Full text link
    Large numbers of ground states of 3d EA Ising spin glasses are calculated for sizes up to 10^3 using a combination of a genetic algorithm and Cluster-Exact Approximation. A detailed analysis shows that true ground states are obtained. The ground state stiffness (or domain wall) energy D is calculated. A D ~ L^t behavior with t=0.19(2) is found which strongly indicates that the 3d model has an equilibrium spin-glass-paramagnet transition for non-zero T_c.Comment: 4 pages, 4 figure

    Towards an efficient process placement policy for MPI applications in multicore environments

    Get PDF
    International audienceThis paper presents a method to efficiently place MPI processes on multicore machines. Since MPI implementations often feature efficient supports for both shared-memory and network communication, an adequate placement policy is a crucial step to improve applications performance. As a case study, we show the results obtained for several NAS computing kernels and explain how the policy influences overall performance. In particular, we found out that a policy merely increasing the intranode communication ratio is not enough and that cache utilization is also an influential factor. A more sophisticated policy (eg. one taking into account the architecture's memory structure) is required to observe performance improvements

    Ordered phase in the two-dimensional randomly coupled ferromagnet

    Full text link
    True ground states are evaluated for a 2d Ising model with random near neighbor interactions and ferromagnetic second neighbor interactions (the Randomly Coupled Ferromagnet). The spin glass stiffness exponent is positive when the absolute value of the random interaction is weaker than the ferromagnetic interaction. This result demonstrates that in this parameter domain the spin glass like ordering temperature is non-zero for these systems, in strong contrast to the 2d Edwards-Anderson spin glass.Comment: 7 pages; 9 figures; revtex; new version much extende

    Calculation of ground states of four-dimensional +or- J Ising spin glasses

    Full text link
    Ground states of four-dimensional (d=4) EA Ising spin glasses are calculated for sizes up to 7x7x7x7 using a combination of a genetic algorithm and cluster-exact approximation. The ground-state energy of the infinite system is extrapolated as e_0=-2.095(1). The ground-state stiffness (or domain wall) energy D is calculated. A D~L^{\Theta} behavior with \Theta=0.65(4) is found which confirms that the d=4 model has an equilibrium spin-glass-paramagnet transition for non-zero T_c.Comment: 5 pages, 3 figures, 31 references, revtex; update of reference

    Ground-state behavior of the 3d +/-J random-bond Ising model

    Full text link
    Large numbers of ground states of the three-dimensional ±J\pm J random-bond Ising model are calculated for sizes up to 14314^3 using a combination of a genetic algorithm and Cluster-Exact Approximation. Several quantities are calculated as function of the concentration pp of the antiferromagnetic bonds. The critical concentration where the ferromagnetic order disappears is determined using the Binder cumulant of the magnetization. A value of pc=0.222±0.005p_c=0.222\pm 0.005 is obtained. From the finite-size behavior of the Binder cumulant and the magnetization critical exponents ν=1.1±0.3\nu=1.1 \pm 0.3 and β=0.2±0.1\beta=0.2 \pm 0.1 are calculated.Comment: 8 pages, 11 figures, revte

    Low-energy excitations in the three-dimensional random-field Ising model

    Get PDF
    The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-energy excitations for the three-dimensional RFIM with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze several properties of these clusters. Our results support the validity of the droplet-model description for the RFIM.Comment: 10 pages, 9 figure

    Reduced costs of mixed-species pairings in flycatchers: by-product or female strategy?

    No full text
    Heterospecific matings are generally assumed to be unconditionally disadvantageous due to reduced viability or fertility of hybrid offspring. For female collared flycatchers (Ficedula albicollis) mated to male pied flycatchers (Ficedula hypoleuca), the cost of heterospecific pair formation is reduced due to high levels of conspecific extra-pair paternity and a male-biased offspring sex ratio. In order to investigate whether these cost-reducing mechanisms are the result of female mating strategies, rather than being a by-productof species incompatibilities, we manipulated the plumage of male collared flycatchers before pair formation to make them resemble male pied flycatchers. Since species incompatibilities are absent in this design, any systematic effect of manipulation on sec ratio or paternity would indicate a role of female mating strategy. Paternity was determined by means of a likelihood approach that controls the errors made in assigning a chick to be 'within-pair' or 'extra-pair'. Neither the sex ratio nor the male share of paternity was affected by the manipulation in a systematic manner. We therefore conclude that our experimental data provide no support for the suggestion that female behavioural strategies are markedly adjusted in response to formation of mixed-species pairs

    Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae

    No full text
    Recombinant Saccharomyces cerevisiae TMB3001, harboring the Pichia stipitis genes XYL1 and XYL2 (xylose reductase and xylitol dehydrogenase, respectively) and the endogenous XKS1(xylulokinase), can convert xylose to ethanol. About 30% of the consumed xylose, however, is excreted as xylitol. Enhanced ethanol yield has previously been achieved by disrupting the ZWF1 gene, encoding glucose-6- phosphate dehydrogenase, but at the expense of the xylose consumption. This is probably the result of reduced NADPH-mediated xylose reduction. In the present study, we increased the xylose reductase (XR) activity 4^19 times in both TMB3001 and the ZWF1-disrupted strain TMB3255. The xylose consumption rate increased by 70% in TMB3001 under oxygen-limited conditions. In the ZWF1-disrupted background, the increase in XR activity fully restored the xylose consumption rate. Maximal specific growth rates on glucose were lower in the ZWF1-disrupted strains, and the increased XR activity also negatively affected the growth rate in these strains. Addition of methionine resulted in 70% and 50% enhanced maximal specific growth rates for TMB3255 (zwf1v) and TMB3261 (PGK1-XYL1, zwf1v), respectively. Enhanced XR activity did not have any negative effect on the maximal specific growth rate in the control strain. Enhanced glycerol yields were observed in the high-XR-activity strains. These are suggested to result from the observed reductase activity of the purified XR for dihydroxyacetone phosphate.The Swedish Foundation for International Cooperation in Research.The Swedish National Energy Administration.União Europeia (UE) - Marie Curie fellowship QLK3-CT-1999-51355.The Nordic Energy Research Programme
    corecore