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Abstract. This paper presents a method to efficiently place MPI pro-
cesses on multicore machines. Since MPI implementations often feature
efficient supports for both shared-memory and network communication,
an adequate placement policy is a crucial step to improve applications
performance. As a case study, we show the results obtained for several
NAS computing kernels and explain how the policy influences overall
performance. In particular, we found out that a policy merely increasing
the intranode communication ratio is not enough and that cache utiliza-
tion is also an influential factor. A more sophisticated policy (eg. one
taking into account the architecture’s memory structure) is required to
observe performance improvements.
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1 Introduction

In the last decade, parallel computer architectures have evolved dramatically.
Clusters have shifted from an assembly of uniprocessor machines interconnected
by a single network to a complex and highly hierarchical structure. Nodes are
now composed of several multicore processors sharing memory banks physically
scattered across the node. Major CPU manufacturers like AMD (HyperTrans-
port) and Intel (Quick Path Interconnect) follow this trend. The memory access
time depends on the location of both the core and the memory bank. This is
often designed as the Non-Uniform Memory Access (NUMA) effect. The mem-
ory hierarchy is also more complex due to the increase of cache levels. This
sharing of memory resources depends on the CPU architecture and differs from
a manufacturer to another. As for the interconnection network, multirail sys-
tems where several high-speed NICS are connected to a node are sometimes also
encountered.

A real challenge for a parallel applications is to exploit such architectures
at their full potential. In order to achieve the best performance, many factors
must be taken into consideration and studied. The first one is to make use of an
implementation of the MPI specifications [1] able to efficiently take advantage of
a multicore environment. Whilst the MPI standard is architecture-independent,
it is an implementation’s task to bridge the gap between the hardware’s per-
formance and the application’s. Indeed, recent MPI-2 implementations such as
Open MPI [2] or MPICH2 [3] fulfill this purpose and offer a very satisfactory
performance level on multicore architectures.



However, in order for an MPI implementation to fully exploit the underlying
hardware, the MPI application processes have to be placed carefully on the
cores of the target architecture. This placement policy has to be defined by both
the application’s communication pattern and the hardware’s characteristics. For
instance, if some application processes communicate more frequently than others,
they should be regrouped and placed on the same multicore node. By doing so,
the amount of intranode communication increases and the application global
performance will improve since intranode communication (shared memory) is
faster than internode communication (network).

In this paper we expose the method and software tools we employed to al-
low an MPI application to better take advantage of a multicore environment.
We will show a performance improvement not due to modifications of the MPI
implementation itself but rather due to a relevent process placement. The rest
of this paper is organized as follows: Section 2 describes how process placement
is determined and on which set of tools and algorithms it relies. Experimen-
tals results are presented in Section 3 with performance figures for some of the
NAS computing kernels. Section 4 lists related works in this area of MPI process
placement and discusses some issues raised by information gathering. Section 5
concludes this paper and opens future perspectives.

2 Computation of a relevant MPI process placement

In order to place the MPI processes in a relevant fashion, we have to gather infor-
mation about the target architecture and the application’s communication pat-
tern. Once both are available we analyze them and determine the best possible
placement. The criterion choice should follow a user-defined strategy. However,
the current scope of this work does not encompass all MPI applications.

2.1 Hypotheses about MPI applications and their execution

environment

In the rest of this paper we consider static MPI applications. By static, we mean
that the application does not use any of the dynamic processes features offered
by MPI-2. We also exclude hybrid MPI applications that rely on multithread-
ing features (such as OpenMP directives). The number of computing entities
(threads and processes) is therefore guaranteed to remain constant during an
application’s execution. We also consider the target machine to be fully dedi-
cated to the MPI application. All cores are usable by the MPI processes with the
restriction that only a single MPI process runs on a given core. As a consequence
of these points, a static mapping between the MPI processes and the CPU cores
can be computed before launching the application. This placement will not need
to be modified during the application’s execution.

2.2 Gathering the hardware’s information

As previously explained, clusters of NUMA nodes are hierarchically structured.
For instance, figure 1 shows the architecture of an AMD Opteron-based compute



node. This compute node is composed of four dies with two cores each. Each die
possesses a set of main memory banks attached to it. A core features its own
Level 1 cache (not shown) and Level 2 cache, not shared with the other core on
the same die. A core located on a die can access the main memory of any other
die but the access time increases as the physical distance between the core and
the memory bank lengthens. A network interface card (NIC) can be attached to
a bus connected to Die #0 and Die #1 . Since the cores located on these dies are
physically closer to the I/O bus, one might expect faster network transactions
for processes mapped on these cores.
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Fig. 1. An exemple of hierarchical compute node: an 8-cores Opteron

Some tools can provide us with the needed information (e.g libtopology or
Portable Linux Processor Affinity [4] available for Linux). However, such tools
are not portable and accurate enough over a wide spectrum of operating systems.
To gather the hardware’s information, we used a topology discovery mechanism
implemented in the PM2 runtime system [5]. This feature is employed to help
the scheduling of threads on multicore nodes [6]. Currently, this mechanism only
deals with CPUs and does not deliver information about networks and I/O buses.
For instance, when applied to the Opteron node as depicted by figure 1, the PM2

topology discovery mechanism outputs the information displayed by figure 2.

Machine:

NUMANode + Die: Node#0(8GB) Die#0

L2Cache + Core + L1Cache + SMTproc : L2#0(1MB) Core#0 L1#0(64kB) CPU#0

L2Cache + Core + L1Cache + SMTproc : L2#4(1MB) Core#1 L1#4(64kB) CPU#4

NUMANode + Die: Node#1(8GB) Die#1

L2Cache + Core + L1Cache + SMTproc : L2#1(1MB) Core#0 L1#1(64kB) CPU#1

L2Cache + Core + L1Cache + SMTproc : L2#5(1MB) Core#1 L1#5(64kB) CPU#5

NUMANode + Die: Node#2(8GB) Die#2

L2Cache + Core + L1Cache + SMTproc : L2#2(1MB) Core#0 L1#2(64kB) CPU#2

L2Cache + Core + L1Cache + SMTproc : L2#6(1MB) Core#1 L1#6(64kB) CPU#6

NUMANode + Die: Node#3(8GB) Die#3

L2Cache + Core + L1Cache + SMTproc : L2#3(1MB) Core#0 L1#3(64kB) CPU#3

L2Cache + Core + L1Cache + SMTproc : L2#7(1MB) Core#1 L1#7(64kB) CPU#7

Fig. 2. Hardware information generated by PM2’s topology discovery mecha-
nism.



We generate from this ouptut a data structure that other tools will use to
compute the placement. This data structure is a graph with vertices representing
the CPU cores and weighted edges. This graph is complete and non-oriented.
The weight affected to each edge increases as more elements of the memory
hierarchy are shared between cores. It is also affected by the NUMA effect.

Figure 3 shows the various weight values chosen for the Opteron compute
node (figure 1). We decided to put the largest weight for cores on the same
die because they directly share memory banks. The next largest weight value
corresponds to NUMA effects: for instance core #0 is able to access the memory
attached to Die #2 and Die #1 faster than the memory attached to Die #3.
When the machine is made of several compute nodes, we build a larger graph
and affect a larger weight for cores located within the same compute node. The
smallest weight values thus correspond to communication using the network.
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Fig. 3. Matrix representation of the hardware’s information from figure 2. (Ma-
chine(i,j) represents the potential of communication between cores #i and #j).

2.3 Collecting the application’s communication pattern data

The second piece of information deals with the application’s communication
pattern. Each application possesses its own pattern influenced by the number
of participating processes. Our chosen characterization criterion for this pattern
is the amount of MPI data exchanged between processes. Therefore, we need to
compute this amount for each pair of processes in the application.

Several sophisticated tools are provided for MPI application tracing and anal-
ysis, such as the MPI Parallel Environment (MPE). However, they do not provide
all the necessary information. For instance, MPE is able to trace all calls to MPI
routines made by the application. By analyzing such a trace and focusing on
the point-to-point calls, we can have hints about the communication pattern.
This approach is simple and require to configure the MPI implementation with
MPE support and to link the application with the appropriate libraries. This is
limited by two factors: first, the trace generated can be potentially very large
and second, the amount of data exchanged in collective operations is not taken
into account.

As a consequence we found simpler and more accurate to modify an MPI
implementation to collect the desired information. By modifying directly an im-
plementation, we reduce drastically the trace size and take into account collective
communication operations. In order to get a generic (that is, not implementation-
specific) information, we trace only the size of MPI user data exchanged between



processes. All costs induced by the implementation’s internal protocols are not
counted. As for the hardware’s data, we represent this communication pattern
with a complete, non-oriented graph with weighted edges. In this case, the weight
value increases as the amount of data exchanged between MPI processes grows.
An example is depicted by figure 4: the matrix represents the communication
pattern for one NAS benchmark (lu.B.8).
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Fig. 4. Matrix representation of NAS LU (class B, 8 processes) communica-
tion pattern. (Application(i,j) represents the amount of communication between
processes #i and #j).

2.4 Mapping a MPI process rank to a CPU core number

The final step is to extract an embedding of the application’s graph from the
target machine’s graph. We use the Scotch software [7] to solve this NP graph
problem. Scotch applies graph theory, with a divide and conquer approach, to
scientific computing problems such as graph and mesh partitioning, static map-
ping, and sparse matrix ordering. In our case, we use the ability to construct a
static mapping. Scotch implements dual recursive bipartitioning algorithms to
perform this task [8] and computes static mappings for graphs larger than 232

vertices. This ensures that we can create a mapping for all MPI applications,
regardless of their size.

MPI COMM WORLD Rank 0 1 2 3 4 5 6 7
Core Number 3 7 4 0 6 2 5 1

Table 1. Resulting mapping for application NAS lu.B.8 on the Opteron compute
node.

For instance, table 1 gives the static mapping computed by Scotch in the case
of the NAS lu.B.8 benchmark (figure 4) launched on the Opteron compute node
(figure 3). Using this static mapping, we finally generate a specific command line
fully customized for each (Application,Target Machine) couple. Practically, each
MPI process is affected to its dedicated core with the numactl command.

3 Evaluation: a case study with NAS computing kernels

In this section, we present some results obtained by applying the method previ-
ously described on several NAS computing kernels. We first describe our exper-
imental environment, then show the results and finally comment on them.



3.1 Experimental environment and NAS benchmarks choice

We carried out experiments on a 10-nodes cluster called Borderline, part of the
Grid5000 testbed [9]. Borderline nodes are similar to the exemple depicted by
figure 1: each node features four dies (a 2.6 GHz AMD Opteron 2218) with two
cores each. A core possesses its own Level 2 cache (1 MBytes) not shared with
the other core on the same die. The total amount of memory is 32 GBytes per
node (8 GBytes per die). A Myrinet 10G NIC is attached on a bus to Die #0.
The Linux kernel installed is 2.6.22.1 (SMP version).

We benchmark some of the NAS computing kernels in order to assess the
relevance of our placement method and policy. We first make a run of all NAS
benchmarks to gather their respective communication pattern data, as described
in section 2.3. Since our placement technique is currently based only on the global
amount of data exchanged, we only run tests where this amount is significant:
64-processes jobs of classes C and D. Likewise, we test only applications with
irregular communication patterns. Indeed, they are likely to be the most influ-
enced by the placement of processes in a multicore environment. Among all NAS
kernels, only BT, CG, LU, MG and SP have an irregular communication pat-
tern. In the case of CG, some processes do not communicate with others. But
when communication occurs, the global amount of data exchanged for each pair
of processes is of same magnitude. In the case of BT, LU, MG and SP these
amounts differ dramatically from one pair to the other.

3.2 NAS performance results for two MPI implementations

In order to confirm that the method used and the data gathered are implement-
ation-independent, we expose performance comparisons for two different MPI
implementations. This first one is MPICH2-Nemesis, which relies on a very ef-
ficient intranode communication system using shared-memory [10]. We config-
ured Nemesis to use its most recent MX support (available in the MPICH2 1.1
release). The other MPI implementation is MPICH2-MX [11] designed and im-
plemented by Myricom. This implementation also features an efficient intranode
communication system based on an in-kernel mechanism.

BT CG LU MG SP

C D C D C D C D C D
Round-Robin 51.6 1038.6 23.9 1177.5 45.5 1356.5 5.6 119.2 78.6 2015.63
Placed 45.6 851.7 15.6 848.4 33.6 938.3 3.7 85.3 60.2 1386.8

Table 2. MPICH2-Nemesis:MX execution times in seconds for two different
placement policies.

Table 2, figures 5 and 6 show the NAS performance for two different place-
ment policies. The first placement policy is a simple Round-Robin-type policy
where the process number i is executed on the node number n where n ≡ i

mod 8 (in our case each node features eight cores). This type of placement is
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Fig. 5. Process placements comparison for MPICH2-Nemesis:MX.
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Fig. 6. Process placements comparison for MPICH2-MX.

commonly used when launching MPI applications without any knowledge of
their communication patterns. With this scheme, the operating system chooses
on which core a process is executed. The other policy, called Placed is the one
determined thanks to the method described in section 2. In the case of MPICH2-
Nemesis:MX, there is a significant performance gap between the Placed policy
and the Round-Robin policy. This result applies to both C and D classes. As
our results indicate, this improvement for Classes C and D kernels is roughly of
25%. In the case of Myricom’s MPICH2-MX, this gap is even larger: execution
times are 34% faster when our Placed policy is enforced. One might note that in
the case of the CG kernel (class C), performance is much better with our custom
placement than with the Round-Robin one.

3.3 NAS performance and placement policies analysis

The Placed policy regroups MPI processes on the same node as much as possible.
The ratio of intranode communication (using shared-memory) versus internode



communication (using the Myrinet network) increases as Table 3 shows. How-
ever, questions remain: is this performance gap solely due to this increase of
intranode communication ratio in the application? Do others factors – such as
memory hierarchy and structure – influence performance too? In order to answer

BT CG LU MG SP

C D C D C D C D C D
Round-Robin 32% 33% 0% 0% 46% 46% 39% 50% 31% 33%
Placed 53% 54% 78% 78% 70% 70% 55% 66% 52% 54%

Table 3. Overall intranode communication ratios in NAS kernels for two differ-
ent placement policies.

these questions, we run the NAS kernels with three other placement policies. The
first new policy is the same as the Round Robin policy, except that each pro-
cess is bound to a particular core with the numactl command. In this way, the
operating system cannot change a process location when scheduling occurs. The
Level 2 cache utilization is therefore better. In this case, the intranode communi-
cation ratio is not improved. The second new policy regroups the MPI processes
on the nodes as much as possible (like in the Placed policy) but instead of bind-
ing each MPI process on its dedicated core, we let the operating system choose
the placement (like in the regular Round-Robin policy). By doing so, the overall
ratio of intranode communication versus internode communication is increased
but we do not take anymore into account factors such as NUMA effects, mem-
ory hierarchy or die sharing by processes. Cache utilization will be negatively
impacted when processes are placed according to this policy. The last policy also
regroups process on the compute nodes but we force the intranode placement to
be suboptimal: in this case we place the processes that communicate the most
on opposite dies in the compute node. This last policy and the Regroup policy
share a common point in that process placement within the node is very poor.
The difference between the two is that with the Placed Core Reverse policy,
cache utilization is better since processes are pinned to a core. Figure 7 shows
the results: both Round-Robin and Placed policies are the same as in section 3.2,
while Round-Robin Core Binding, Regroup and Placed Core Reverse represent
the new placement policies described above. The results indicate that merely
improving the intranode communication ratio is not enough to deliver better
performance. Increasing this ratio without taking into account cache utilization
leads to suboptimal results. Globally, our Placed policy delivers slightly bet-
ter results than the others policies. The CG kernel is the benchmark for which
the performance improvement is the most noticeable. These results suggest that
cache utilization has a great influence on NAS performance. and advocates for
a placement policy that takes architectural factors into consideration. However,
we think that the Opteron compute nodes we used have a too small NUMA
effect for it to impact applications performance. Also, the results obtained with
the Placed Core Reverse policy show that despite the increase of traffic on the
memory bus (induced by this policy), the impact on performance is limited on
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Fig. 7. Process placements comparison for MPICH2-Nemesis:MX.

the compute nodes we used. Last, Level 2 cache is not shared between cores on
the same die as explained in section 2.2. Those three aspects lead us to think that
our placement policy could perform even better on nodes featuring more cores,
with substantial NUMA effects, and where cache is effectively shared between
cores. Finally, since we do not know the theoretical achievable performance of
this particular cluster, we cannot assess how close to the optimal placement we
actually are.

4 Related Works and Discussion

An adequate process placement is a necessity to fully take advantage of multicore
environments. The MPI standard itself offers a set of routines that allow the ap-
plications developers to create and manipulate topologies. Using such topologies,
MPI processes could be placed according application’s communication pattern.
However, only a subset of existing MPI applications makes use of these topology
creation and management features. Also, as [12] points out, not all MPI imple-
mentations support these efficiently. At last, this mapping between the virtual
topology created and the physical topology (the issue on which we focus in this
paper) is outside the scope of the MPI standard. Our approach – deploying the
MPI processes according to a matching between the application’s communica-
tion pattern and the machine’s architecture – is more generic and can benefit to
any MPI application. Actually, this approach is not MPI-dependent, but rather
message-passing-dependent. It can be applied even to non-MPI applications as
long as the necessary information is collectable.

Placing MPI processes according to the underlying target architecture us-
ing graph theory has already been explored. Several vendor MPI implementa-
tions, such as the ones provided by Hewlett-Packard [13] or by IBM (according
to [14]) make use of such mechanism. [12] also formalizes the problem with
graphs. In these cases, however, the algorithm computing the final mapping is
MPI implementation-specific. In our framework, we rely on an external piece of
software (Scotch) fully tailored for graph computations. This ensures both per-
formance and scalability. Scotch is indeed able to work on very large classes of



graphs, larger that the maximum number of MPI processes present in any MPI
application.

As explained in section 2.2, architecture’s information is gathered thanks
to PM2’s topology discovery mechanism. But this feature is fully embedded in
this software stack and rather unconvenient to use. Such a topology discovery
feature would be very useful for many other applications, especially MPI process
managers. Hybrid MPI+OpenMP applications could also take advantage from
it[15]. There is a clear need for a portable and accurate tool dedicated to topology
discovery. We already started to work on this specific point.

The last issue we would like to address regards the gathering of applications
communication patterns. In order to get the needed information to create the
mapping, we have to execute a prior run of the applications compiled with a
modified MPI implementation fitting our needs. Other works in this field use the
same coarse scheme. They also emphasize that tracing tools could be enhanced
to address the specific issue of getting the amount of data exchanged between two
given processes, as HP’s Light Weight Instrumentation [13] does. The necessary
information could be an estimate of the communication flows that would allow us
to rank pairs of processes accordingly. However, the ability to perform this prior
run does not systematically exists. Other solutions should be investigated. For
instance, relying on an application’s programmer’s knowledge is also possible but
once again far from always possible. Could this kind of information be computed
at compile time? Would it be possible to pass an option to the mpicc compiler
that would automatically generate the customized command line? These are
issues we would like to address in the near future.

5 Conclusion and Future Work

In this paper, we expose a method that leads an MPI application to better
exploit its target architecture, especially complex and hierarchical multicore en-
vironments. This method relies on gathering information about the underlying
hardware and the application’s communication pattern. This information is then
used to create a mapping between MPI process ranks and each node’s core num-
bers. Finally an application-specific command line is generated. Our method
uses free, open-source software and is not tightly integrated within a partic-
ular MPI implementation. Being able to place the processes according to the
marchine’s topology increases performance. We analyzed several placement poli-
cies and found out that merely increasing the intranode communication ratio in
an application is not enough to deliver more performance: an adequate cache
utilization is also mandatory to enhance performance. The current results are
mitigated: our sophisticated placement policy improves MPI performance appli-
cations but should yield even better results on more complex architectures. We
look forward to run our experiments on a different (and more complex) class of
hardware.

Possible future works are numerous: as we previously stated, we began to
work on a software tool that would allow us to easily extract hardware’s in-
formation. Integrating information about I/O buses or even GPUs should also
be considered. We would like to relax some constraints about the type of MPI



applications falling into the scope of this work. We do consider static MPI ap-
plications, that is, applications where the amount of computing entities remains
constant throughout the execution. This excludes both applications spawning
new MPI processes and multithreaded ones. Since hybrid programming, mixing
message-passing and multithreading, is considered as a possible way to better
program multicore architectures, we plan to address the issue of MPI processes
placement when OpenMP parallel sections appear in MPI processes. Another
interesting direction would be to refine the application data regarding its com-
munication pattern. For now, we did only consider a spatial pattern. But what
about the temporal pattern? Indeed, the data exchanges occuring between a
given pair of processes may vary during the application’s execution. In order to
take this phenomenon into account we will have to isolate application time slices
and remap the MPI processes during such time slices. What granularity for slices
would be the most beneficial to performance? Also, we would have to modify the
mapping during execution. For intranode communication this task is easy but
for internode communication we would have to migrate processes from one node
to the other. Using virtual machines in this context might be a way to implement
this. Also, some other influential factors such as contention on the memory and
I/O buses could be taken more into consideration. This would lead to an even
more refined placement policy but requires to comprehend thoroughly the tar-
get application. Generating MPI-implementation dependent information could
also be considered in order to increase the policy’s accuracy. Last, we plan to
investigate the feasability of gathering the application’s information at compile
time.
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