1,620 research outputs found

    Can Twitter be a source of information on allergy? Correlation of pollen counts with tweets reporting symptoms of allergic rhinoconjunctivitis and names of antihistamine drugs

    Get PDF
    Pollen forecasts are in use everywhere to inform therapeutic decisions for patients with allergic rhinoconjunctivitis (ARC). We exploited data derived from Twitter in order to identify tweets reporting a combination of symptoms consistent with a case definition of ARC and those reporting the name of an antihistamine drug. In order to increase the sensitivity of the system, we applied an algorithm aimed at automatically identifying jargon expressions related to medical terms. We compared weekly Twitter trends with National Allergy Bureau weekly pollen counts derived from US stations, and found a high correlation of the sum of the total pollen counts from each stations with tweets reporting ARC symptoms (Pearson's correlation coefficient: 0.95) and with tweets reporting antihistamine drug names (Pearson's correlation coefficient: 0.93). Longitude and latitude of the pollen stations affected the strength of the correlation. Twitter and other social networks may play a role in allergic disease surveillance and in signaling drug consumptions trends

    A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4<z<2.5

    Get PDF
    A simple two color selection based on B-, z-, and K- band photometry is proposed for culling galaxies at 1.4<z<2.5 in K-selected samples and classifying them as star-forming or passive systems. The method is calibrated on the highly complete spectroscopic redshift database of the K20 survey, verified with simulations and tested on other datasets. Requiring BzK=(z-K)-(B-z)>-0.2 (AB) allows to select actively star-forming galaxies at z>1.4, independently on their dust reddening. Instead, objects with BzK<-0.2 and (z-K)>2.5 (AB) colors include passively evolving galaxies at z>1.4, often with spheroidal morphologies. Simple recipes to estimate the reddening, SFRs and masses of BzK-selected galaxies are derived, and calibrated on K<20 galaxies. Based on their UV (reddening-corrected), X-ray and radio luminosities, the BzK-selected star-forming galaxies with K<20 turn out to have average SFR ~ 200 Msun yr^-1, and median reddening E(B-V)~0.4. Besides missing the passively evolving galaxies, the UV selection appears to miss some relevant fraction of the z~2 star-forming galaxies with K<20, and hence of the (obscured) star-formation rate density at this redshift. The high SFRs and masses add to other existing evidence that these z=2 star-forming galaxies may be among the precursors of z=0 early-type galaxies. Theoretical models cannot reproduce simultaneously the space density of both passively evolving and highly star-forming galaxies at z=2. In view of Spitzer Space Telescope observations, an analogous technique based on the RJL photometry is proposed to complement the BzK selection and to identify massive galaxies at 2.5<z<4.0. These color criteria should help in completing the census of the stellar mass and of the star-formation rate density at high redshift (abridged).Comment: 19 pages, 17 figures, to appear on ApJ (20 December 2004 issue

    Ground-based monitoring of comet 67P/Churyumov-Gerasimenko gas activity throughout the <i>Rosetta</i> mission

    Get PDF
    Simultaneously to the ESA Rosetta mission, a world-wide ground-based campaign provided measurements of the large scale activity of comet 67P/Churyumov-Gerasimenko through measurement of optically active gas species and imaging of the overall dust coma. We present more than two years of observations performed with the FORS2 low resolution spectrograph at the VLT, TRAPPIST, and ACAM at the WHT. We focus on the evolution of the CN production, as a tracer of the comet activity. We find that it is asymmetric with respect to perihelion and different from that of the dust. The CN emission is detected for the first time at 1.34 au pre-perihelion and production rates then increase steeply to peak about two weeks after perihelion at (1.00±0.10) ×1025 molecules s−1, while the post-perihelion decrease is more shallow. The evolution of the comet activity is strongly influenced by seasonal effects, with enhanced CN production when the Southern hemisphere is illuminated

    Global Measles Epidemic Risk: Current Perspectives on the Growing Need for Implementing Digital Communication Strategies

    Get PDF
    A safe vaccine against measles has been available and globally recommended since 1974. The World health Organization established measles elimination as a goal for 2020 but, unfortunately, this objective has not been achieved yet and outbreaks still occur. Herd immunity, ie, a population immunity higher than 95%, is required to stop the measles virus transmission. Communication plays a crucial role in immunization strategy to obtain high coverage levels, as it helps to fight barriers against vaccination. Delay and refusal of measles vaccination have become widespread due to misinformation, fake news and barriers to effective communication. This phenomenon has been defined as "vaccine hesitancy" and is considered as one of the top ten risks for global health. The alleged association between measles vaccination and autism has caused a sharp decline in vaccination rates. In this current situation, mass communication integrated into public health policies is fundamental to sway people's positive attitudes toward vaccination. Digital communication strategies based on social media and other internet platforms may represent useful tools to promote immunization and discourage skepticism and complement information provided by health-care professionals who have been considered as the most credible source on risk/benefits on vaccines for families. Digital communication strategies that may help supporting the measles elimination strategy include monitoring information needs online, integrating digital communication into immunization programs, involving a multidisciplinary group in communication, developing content that balances facts with positive messaging, using multiple communication channels. Further research activities should be promoted in the field of effective communication for immunization

    The Swift X-ray Telescope Cluster Survey II. X-ray spectral analysis

    Full text link
    (Abridged) We present a spectral analysis of a new, flux-limited sample of 72 X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT) on board the Swift satellite down to a flux limit of ~10-14 erg/s/cm2 (SWXCS, Tundo et al. 2012). We carry out a detailed X-ray spectral analysis with the twofold aim of measuring redshifts and characterizing the properties of the Intra-Cluster Medium (ICM). Optical counterparts and spectroscopic or photometric redshifts are obtained with a cross-correlation with NED. Additional photometric redshifts are computed with a dedicated follow-up program with the TNG and a cross-correlation with the SDSS. We also detect the iron emission lines in 35% of the sample, and hence obtain a robust measure of the X-ray redshift zX. We use zX whenever the optical redshift is not available. Finally, for all the sources with measured redshift, background-subtracted spectra are fitted with a mekal model. We perform extensive spectral simulations to derive an empirical formula to account for fitting bias. The bias-corrected values are then used to investigate the scaling properties of the X-ray observables. Overall, we are able to characterize the ICM of 46 sources. The sample is mostly constituted by clusters with temperatures between 3 and 10 keV, plus 14 low-mass clusters and groups with temperatures below 3 keV. The redshift distribution peaks around z~0.25 and extends up to z~1, with 60% of the sample at 0.1<z<0.4. We derive the Luminosity-Temperature relation for these 46 sources, finding good agreement with previous studies. The quality of the SWXCS sample is comparable to other samples available in the literature and obtained with much larger X-ray telescopes. Our results have interesting implications for the design of future X-ray survey telescopes, characterised by good-quality PSF over the entire field of view and low background.Comment: 27 pages, 15 figures; minor typos corrected. To be published in A&A, Volume 567, July 2014. Websites of the SWXCS project: http://www.arcetri.astro.it/SWXCS/ and http://swxcs.ustc.edu.cn

    The Fourth Positive System of Carbon Monoxide in the Hubble Space Telescope Spectra of Comets

    Full text link
    The rich structure of the Fourth Positive System (A-X) of carbon monoxide accounts for many of the spectral features seen in long slit HST-STIS observations of comets 153P/Ikeya-Zhang, C/2001 Q4 (NEAT), and C/2000 WM1 (LINEAR), as well as in the HST-GHRS spectrum of comet C/1996 B2 Hyakutake. A detailed CO fluorescence model is developed to derive the CO abundances in these comets by simultaneously fitting all of the observed A-X bands. The model includes the latest values for the oscillator strengths and state parameters, and accounts for optical depth effects due to line overlap and self-absorption. The model fits yield radial profiles of CO column density that are consistent with a predominantly native source for all the comets observed by STIS. The derived CO abundances relative to water in these comets span a wide range, from 0.44% for C/2000 WM1 (LINEAR), 7.2% for 153P/Ikeya-Zhang, 8.8% for C/2001 Q4 (NEAT) to 20.9% for C/1996 B2 (Hyakutake). The subtraction of the CO spectral features using this model leads to the first identification of a molecular hydrogen line pumped by solar HI Lyman-beta longward of 1200A in the spectrum of comet 153P/Ikeya-Zhang. (Abridged)Comment: 12 pages, 11 figures, ApJ accepte

    The Visible and Near Infrared module of EChO

    Full text link
    The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 micron pitch and working at a temperature of 45K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.Comment: 26 page

    Hubble Space Telescope Imaging in the Chandra Deep Field South: III. Quantitative Morphology of the 1Ms Chandra Counterparts and Comparison with the Field Population

    Full text link
    We present quantitative morphological analyses of 37 HST/WFPC2 counterparts of X-ray sources in the 1 Ms Chandra Deep Field-South (CDFS). We investigate: 1) 1-D surface brightness profiles via isophotal ellipse fitting; 2) 2-D, PSF- convolved, bulge+disk+nucleus profile-fitting; 3) asymmetry and concentration indices compared with all ~3000 sources in our three WFPC2 fields; and 4) near- neighbor analyses comparing local environments of X-ray sources versus the field control sample. Significant nuclear point-source optical components appear in roughly half of the resolved HST/WFPC2 counterparts, showing a narrow range of F_X/F_{opt,nuc} consistent with the several HST-unresolved X-ray sources (putative type-1 AGN) in our fields. We infer roughly half of the HST/WFPC2 counterparts host unobscured AGN, which suggests no steep decline in the type-1/type-2 ratio out to the redshifts z~0.5-1 typical of our sources. The concentration indices of the CDFS counterparts are clearly larger on average than those of the field distribution, at 5-sigma, suggesting that the strong correlation between central black hole mass and host galaxy properties (including concentration index) observed in nearby galaxies is already evident by z~0.5-1. By contrast, the asymmetry index distribution of the 21 resolved CDFS sources at I<23 is indistinguishable from the I<23 field. Moreover, the frequency of I<23 near neighbors around the CDFS counterparts is not significantly different from the field sample. These results, combined with previous similar findings for local samples, suggest that recent merger/ interaction history is not a good indicator of AGN activity over a substantial range of look-back time.Comment: 30 pages, incl. 8 figures; accepted for publication in the Astrophysical Journa
    corecore