842 research outputs found

    Modification of tumour blood flow using the hypertensive agent, angiotensin II

    Get PDF
    The effects of different doses of angiotensin II (0.02 to 0.5 microgram kg-1 min-1 on mean arterial blood pressure, tissue blood flow and tissue vascular resistance were investigated in BD9 rats. Blood flow was measured using the uptake of 125I- or 14C-labelled iodoantipyrine (125I-IAP and 14C-IAP). Spatial heterogeneity of blood flow within tumours, before and after angiotensin II infusion, was also measured using 14C-IAP and an autoradiographic procedure. Mean arterial blood pressure rose steeply with angiotensin II dose. Blood flow to skeletal muscle, skin overlying the tumour, contralateral skin, small intestine and kidney tended to decline in a dose-dependent manner. Blood flow to the tumour was also reduced (to 80% of control values) but there was no dose response. Blood flow to the heart was slightly increased and blood flow to the brain was unaffected by angiotensin II. Vascular resistance, in all tissues, was increased by angiotensin II infusion. The increase in tumour tissue was similar to that found in skeletal muscle and small intestine and is likely to be caused by a direct vasoconstricting effect of the drug rather than autoregulation of tumour blood flow in the face of an increase in perfusion pressure. The reduction in overall blood flow at the highest perfusion pressure was due to a preferential effect of angiotensin II at the tumour periphery. These results show that some tumours, at least, can respond directly to the effects of vasoactive agents

    The response of tumour vasculature to angiotensin II revealed by its systemic and local administration to 'tissue-isolated' tumours.

    Get PDF
    A tissue-isolated preparation of the P22 rat carcinosarcoma was used to investigate the tumour vascular response to angiotensin II (ATII). In particular, the relative importance of systemic and local tumour factors was assessed by comparing tumour vascular resistance during systemic administration of ATII and during administration directly into the tumour-supplying artery. The effect of hypervolaemia on tumour vascular resistance was determined as well as the effect of ATII on oxygen metabolism. Tumour vascular resistance was increased by ATII in a dose-dependent manner. The response was biphasic with an initial peak in resistance followed by a lower plateau phase. Systemic administration of ATII was more effective in increasing tumour vascular resistance than direct administration. This suggests that systemic administration is not causing any reopening of previously collapsed tumour blood vessels. Further evidence for this is that hypervolaemia caused no reduction in tumour vascular resistance and that there was no difference in oxygen extraction by tumours between groups treated with systemically and directly administered ATII. A heterogeneous distribution of ATII receptors in the P22 tumour is a more likely explanation for the known heterogeneity of blood flow response to ATII

    Excess noise characteristics of Al0.8Ga0.2As avalanche photodiodes

    Get PDF
    The avalanche noise characteristics of Al0.8Ga0.2 As have been measured in a range of p-i-n and n-i-p diodes with i-region widths ω varying from 1.02 to 0.02 μm. While thick bulk diodes exhibit low excess noise from electron initiated multiplication, owing to the large α/β ratio (1/k), the excess noise of diodes with ω < 0.31 μm were found to be greatly reduced by the effects of dead space. The thinnest diodes exhibit very low excess noise, corresponding to k = 0.08, up to a multiplication value of 90. In contrast to most III-V materials, it was found that both thick and thin Al0.8Ga0.2As multiplication layers can give very low excess noise and that electrons must initiate multiplication to minimize excess noise, even in thin structure

    Resistance to flow through tissue-isolated transplanted rat tumours located in two different sites

    Get PDF
    The perfusion characteristics of the P22 carcinosarcoma were investigated in tissue-isolated tumour preparations in the ovarian and inguinal fat pads of BD9 rats. Tumours were perfused with a physiological buffer of known viscosity and changes in perfusion pressure were recorded at different perfusion rates in an ex vivo system. At perfusion pressures exceeding 30-40 mmHg tumour flow rate was directly proportional to the perfusion pressure in all tumours, indicating a constant resistance to flow. An apparent positive pressure difference across the tumour vasculature of 20-30 mmHg occurred under conditions of zero flow in either site. At low perfusion pressures, the flow resistance increased sharply due to increases in the geometric resistance of the tumours. These findings are in accord with previously published data. Geometric resistance increased with tumour volume in both sites and was approximately five times greater in the inguinal tumours than it was in the ovarian tumours, on a weight to weight basis. The dependence of tumour geometric resistance on perfusion pressure differs from the situation in normal tissues and may provide a means of manipulating the tumour microcirculation to the exclusion of the systemic blood supply. The dependence of geometric resistance on tumour site may partly explain why tumours located in different sites respond differently to various forms of therapy

    Characterisation of tumour blood flow using a 'tissue-isolated' preparation.

    Get PDF
    Tumour blood flow was characterised in a 'tissue-isolated' rat tumour model, in which the vascular supply is derived from a single artery and vein. Tumours were perfused in situ and blood flow was calculated from simultaneous measurement of (1) venous outflow from the tumour and (2) uptake into the tumour of radiolabelled iodo-antipyrine (IAP). Comparison of results from the two measurements enabled assessment of the amount of blood 'shunted' through the tumours with minimal exchange between blood and tissue. Kinetics of IAP uptake were also used to determine the apparent volume of distribution (VDapp) for the tracer and the equilibrium tissue-blood partition coefficient (lambda). lambda was also measured by in vitro techniques and checks were made for binding and metabolism of IAP using high-pressure liquid chromatography. VDapp and lambda were used to calculate the perfused fraction (alpha) of the tumours. Tumour blood flow, as measured by IAP (TBFIAP), was 94.8 +/- 4.4% of the blood flow as measured by venous outflow, indicating only a small amount of non-exchanging flow. This level of shunting is lower than some previous estimates in which the percentage tumour entrapment of microspheres was used. The unperfused fraction ranged from 0 to 20% of the tumour volume in the majority of tumours. This could be due to tumour necrosis and/or acutely ischaemic tumour regions. For practical purposes, measurement of the total venous outflow of tumours is a reasonable measure of exchangeable tumour blood flow in this system and allows for on-line measurements. Tracer methods can be used to obtain additional information on the distribution of blood flow within tumours

    Modification of the 31P magnetic resonance spectra of a rat tumour using vasodilators and its relationship to hypotension.

    Get PDF
    The effects of different doses of hydralazine and prostacyclin on the 31P magnetic resonance spectra of the LBDS1 fibrosarcoma were investigated and related to their effects on mean arterial blood pressure (MABP) and heart rate. The effect of reducing MABP by bleeding the animals, via the tail artery, was also investigated. Tumour spectral changes following high dose drug treatment (an increase in inorganic phosphate, a reduction in nucleotide triphosphates and a reduction in pH) were consistent with nutrient deprivation. These changes were dose dependent. Changes in MABP and heart rate were consistent with vasodilatation in normal tissues. However, for the same fall in MABP, hydralazine produced a greater rise in tumour inorganic phosphate (Pi) and a greater fall in tumour pH than did prostacyclin. Controlled bleeding was effective in reducing MABP. It also reduced tumour pH but had no significant effect on tumour Pi. The clinical application of the two drugs for reducing tumour blood flow and pH for therapy is likely to be limited by the large degree of hypotension necessary to produce an effect. The differential effect of the two drugs for the same fall in MABP may be related to different degrees of direct tumour vasodilatation or to a direct effect of hydralazine on tumour energy metabolism. The observation that controlled bleeding does not change tumour Pi is further evidence indicating that the degree of arterial hypotension is not the sole factor in determining tumour energy status
    • …
    corecore