24 research outputs found

    Effects of ytterbium laser surface treatment on the bonding of two resin cements to zirconia.

    Get PDF
    Monolithic zirconia crowns bonded to zirconia abutments have become more commonly used in the construction of cement-retained implant superstructures. The present study aimed to examine the effects of laser surface treatments on the bond strength of two resin cements to zirconia. Three types of surfaces were examined: untreated, alumina blasted, and ytterbium laser treated; and two types of resin cements: 4-META/MMA-TBB resin cement and composite resin cement. Half of the specimens were subjected to a thermocycling process. Subsequently, a shear bond test was carried out. In addition, surface roughness was measured for each surface type. The results showed that laser treatment increased zirconia surface roughness and that laser treatment significantly increased shear bond strength after the thermocycling of both cement types compared to no treatment. Our experimental results suggested that ytterbium laser surface treatment of zirconia increased the bond strength of resin cements.福岡歯科大学2021年

    Space Demonstration of Two-Layer Pop-Up Origami Deployable Membrane Reflectarray Antenna by 3U CubeSat OrigamiSat-2

    Get PDF
    3U CubeSat OrigamiSat-2 demonstrates a 50-cm × 50-cm two-layer pop-up Origami deployable membrane reflectarray antenna in space. The membrane has small stowage volume and high gain even though it has low flatness because of a large enough antenna area to cover its un-flatness. C-band transmitter is equipped in the CubeSat and offers 20-Mbps amateur satellite communication. In 3U size, a 1-m length deployable gravity gradient mast and magnetic torquer are equipped to stabilize and control its attitude. A camera is attached to the satellite to measure the shape of the membrane antenna. OrigamiSat-2 was selected as the Innovative Satellite Technology Demonstration-4 by Japan Aerospace Exploration Agency (JAXA) and is going to be launched in 2024 by Epsilon Launch Vehicle

    Selective gene silencing by viral delivery of short hairpin RNA

    Get PDF
    RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells

    Predicted Absorption Performance of Cylindrical and Rectangular Permeable Membrane Space Sound Absorbers Using the Three-Dimensional Boundary Element Method

    Get PDF
    Three-dimensional, permeable membrane space sound absorbers have been proposed as practical and economical alternatives to three-dimensional, microperforated panel space sound absorbers. Previously, the sound absorption characteristics of a three-dimensional, permeable membrane space sound absorber were predicted using the two-dimensional boundary element method, but the prediction accuracy was impractical. Herein, a more accurate prediction method is proposed using the three-dimensional boundary element method. In the three-dimensional analysis, incident waves from the elevation angle direction and reflected waves from the floor are considered, using the mirror image. In addition, the dissipated energy ratio is calculated based on the sound absorption of a surface with a unit sound absorption power. To validate the three-dimensional numerical method, and to estimate the improvement in prediction accuracy, the results are compared with those of the measurements and two-dimensional analysis. For cylindrical and rectangular space sound absorbers, three-dimensional analysis provides a significantly improved prediction accuracy for any shape and membrane sample that is suitable for practical use

    Factors of Anti-Vascular Endothelial Growth Factor Therapy Withdrawal in Patients with Neovascular Age-Related Macular Degeneration: Implications for Improving Patient Adherence

    No full text
    We investigated the factors associated with the discontinuation of anti-vascular endothelial growth factor (VEGF) therapies in patients with neovascular age-related macular degeneration (AMD). Japanese patients with AMD aged ≥50 years, reporting at least one prior injection of an anti-VEGF drug, completed an online survey covering reasons for discontinuation or dissatisfaction with therapy, quality of life (EQ-5D-5L) and patient activation (PAM-13). The respondents were divided into two cohorts: Cohort 1—patients who discontinued anti-VEGF therapy (n = 207); Cohort 2—patients continuing anti-VEGF therapy (n = 65). The most common reason for discontinuing therapy was the “doctor’s decision” in 89.4% (Cohort 1-1). In the other 22 (10.6%) patients in Cohort 1 (Cohort 1-2), reasons included “no deterioration in vision”, “financial burden” and “ineffective treatment”. Patients in Cohort 2 were dissatisfied with “long waiting times” (77%), “financial burden” and “ineffective treatment”. Pain/discomfort posed the greatest impact on quality of life. Only 5% of patients in Cohorts 1-1 and 2 and none in Cohort 1-2 were considered advocates for their own health. In conclusion, most patients who discontinued anti-VEGF therapy did so at their doctor’s decision. Addressing the reasons associated with discontinuation or dissatisfaction with anti-VEGF therapies might help improve their continuation

    A Basic Study on a Rectangular Plane Space Sound Absorber Using Permeable Membranes

    Get PDF
    In this communication, the sound absorption characteristics of rectangular-shaped plane space sound absorbers without any backing structure using permeable membranes (PMs) are measured by reverberation room method. First, three types of PMs, in this study woven fabrics, are selected with different flow resistances and surface densities. They are prepared in the plane rectangular-shaped space absorbers of two different sizes. The measured results are discussed through comparison with the existing theoretical and measured results for absorbers of the other shapes or configurations. The present results and discussion demonstrate that the reverberation absorption coefficients of the proposed absorbers are low at low frequencies and converge to a moderately high value at high frequencies. Especially, ones with higher flow resistance than the air impedance converge to a value greater than 0.5, which is a theoretically estimated maximum absorption coefficient of infinite single-leaf PM. This is inferred to be attributed mainly to area effect. From these results the proposed absorbers can be used effectively despite of their very simple structure. Also it is found that the proposed absorber can offer higher sound absorption than permeable membrane absorbers of other shapes or configuration. Regarding the effect of the size, the absorbers of smaller size offer higher absorption coefficients regardless of material properties of the PMs used in the experiments
    corecore