553 research outputs found

    Ultrafast charge transfer dynamics in supramolecular Pt(II) donor-bridge-acceptor assemblies: the effect of vibronic coupling

    Get PDF
    Thanks to major advances in laser technologies, recent investigations of the ultrafast coupling of nuclear and electronic degrees of freedom (vibronic coupling) have revealed that such coupling plays a crucial role in a wide range of photoinduced reactions in condensed phase supramolecular systems. This paper investigates several new donor–bridge–acceptor charge-transfer molecular assemblies built on a trans-Pt(II) acetylide core. We also investigate how targeted vibrational excitation with low-energy IR light post electronic excitation can perturb vibronic coupling and affect the efficiency of electron transfer (ET) in solution phase. We compare and contrast properties of a range of donor–bridge–acceptor Pt(II) trans-acetylide assemblies, where IR excitation of bridge vibrations during UV-initiated charge separation in some cases alters the yields of light-induced product states. We show that branching to multiple product states from a transition state with appropriate energetics is the most rigid condition for the type of vibronic control we demonstrate in our study

    Spectroscopic study of optically induced ultrafast electron dynamics in gold

    Get PDF
    Copyright Š 2007 The American Physical SocietyUsing a supercontinuum pulse as a probe, we have measured the transient reflectivity spectra of a thin film of gold for different values of the pump-probe time delay. The wavelength lambda(x) at which the measured transient reflectivity changes sign has been found to depend upon the time delay, leading to bipolar time resolved signals. The time dependence of lambda(x) has been shown to be consistent with calculations that take into account the full dependence of the reflectivity upon the electron occupation number, and to contradict qualitatively a model in which the signal is assumed to be directly proportional to the occupation number. The shift of lambda(x) has been found to persist at time delays that are much longer than the time required for the electrons to thermalize. Therefore the bipolar reflectivity signals do not necessarily contain a contribution from nonthermalized electrons, as has been previously assumed

    Novel Rotational Dynamics in Anisotropic Fluid Media Studied by Polarisation Resolved Picosecond TCSPC

    Get PDF

    Picosecond time-resolved infrared spectroscopy of rhodium and iridium azides

    Get PDF
    Picosecond time-resolved infrared spectroscopy was used to elucidate early photochemical processes in the diazido complexes M(Cp*)(N3)2(PPh3), M = Rh (1), Ir (2), using 266 nm and 400 nm excitation in THF, CH2Cl2, MeCN and toluene solutions. The time-resolved data have been interpreted with the aid of DFT calculations on vibrational spectra of the singlet ground states and triplet excited states and their rotamers. While the yields of phototransformations via N2 loss are low in both complexes, 2 cleaves a N3 ligand under 266 nm excitation. The molecular structure of 1 is also reported as determined by single crystal X-ray diffraction

    Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts

    Get PDF
    ACKNOWLEDGMENTS This work was supported by a UKRI Future Leaders Fellowship grant (Grant No. MR/S015574/1), STFC-UKRI program access to CLF-ULTRA (Grant No. LSF1828), direct access to CLF-ULTRA (Grant Nos. Apps 17330043 and 19130012), and a group residency in the Research Complex at Harwell (RCaH). The authors are grateful to Kathryn Welsby, Ivalina Minova, and Santhosh Matam for support early in the project with samples and the Linkam cell. Mr. John Still of the School of Geosciences, University of Aberdeen is thanked for the SEM images, and Kieran Farrell/Martin Zanni is thanked for the discussion about the polarizations of the beams creating the thermal transientsPeer reviewedPublisher PD

    Ultrafast Wiggling and Jiggling: Ir_2(1,8-diisocyanomenthane)_4^(2+)

    Get PDF
    Binuclear complexes of d^8 metals (Pt^(II), Ir^I, Rh^I,) exhibit diverse photonic behavior, including dual emission from relatively long-lived singlet and triplet excited states, as well as photochemical energy, electron, and atom transfer. Time-resolved optical spectroscopic and X-ray studies have revealed the behavior of the dimetallic core, confirming that M–M bonding is strengthened upon dσ* → pσ excitation. We report the bridging ligand dynamics of Ir2(1,8-diisocyanomenthane)_4^(2+)(Ir(dimen)), investigated by fs–ns time-resolved IR spectroscopy (TRIR) in the region of C≡N stretching vibrations, ν(C≡N), 2000–2300 cm^(–1). The ν(C≡N) IR band of the singlet and triplet dσ*pσ excited states is shifted by −22 and −16 cm^(–1) relative to the ground state due to delocalization of the pσ LUMO over the bridging ligands. Ultrafast relaxation dynamics of the ^1dσ*pσ state depend on the initially excited Franck–Condon molecular geometry, whereby the same relaxed singlet excited state is populated by two different pathways depending on the starting point at the excited-state potential energy surface. Exciting the long/eclipsed isomer triggers two-stage structural relaxation: 0.5 ps large-scale Ir–Ir contraction and 5 ps Ir–Ir contraction/intramolecular rotation. Exciting the short/twisted isomer induces a ∼5 ps bond shortening combined with vibrational cooling. Intersystem crossing (70 ps) follows, populating a ^3dσ*pσ state that lives for hundreds of nanoseconds. During the first 2 ps, the ν(C≡N) IR bandwidth oscillates with the frequency of the ν(Ir–Ir) wave packet, ca. 80 cm^(–1), indicating that the dephasing time of the high-frequency (16 fs)^(−1) C≡N stretch responds to much slower (∼400 fs)^(−1)Ir–Ir coherent oscillations. We conclude that the bonding and dynamics of bridging di-isocyanide ligands are coupled to the dynamics of the metal–metal unit and that the coherent Ir–Ir motion induced by ultrafast excitation drives vibrational dephasing processes over the entire binuclear cation

    Ultrafast Excited-State Dynamics of Rhenium(I) Photosensitizers [Re(Cl)(CO)_(3)(N,N)] and [Re(imidazole)(CO)_(3)(N,N)]^+: Diimine Effects

    Get PDF
    Femto- to picosecond excited-state dynamics of the complexes [Re(L)(CO)_(3)(N,N)]^n (N,N = bpy, phen, 4,7-dimethyl-phen (dmp); L = Cl, n = 0; L = imidazole, n = 1+) were investigated using fluorescence up-conversion, transient absorption in the 650−285 nm range (using broad-band UV probe pulses around 300 nm) and picosecond time-resolved IR (TRIR) spectroscopy in the region of CO stretching vibrations. Optically populated singlet charge-transfer (CT) state(s) undergo femtosecond intersystem crossing to at least two hot triplet states with a rate that is faster in Cl (~100 fs)^(−1) than in imidazole (~150 fs)^(−1) complexes but essentially independent of the N,N ligand. TRIR spectra indicate the presence of two long-lived triplet states that are populated simultaneously and equilibrate in a few picoseconds. The minor state accounts for less than 20% of the relaxed excited population. UV−vis transient spectra were assigned using open-shell time-dependent density functional theory calculations on the lowest triplet CT state. Visible excited-state absorption originates mostly from mixed L;N,N^(•−) → Re^(II) ligand-to-metal CT transitions. Excited bpy complexes show the characteristic sharp near-UV band (Cl, 373 nm; imH, 365 nm) due to two predominantly ππ*(bpy^(•−)) transitions. For phen and dmp, the UV excited-state absorption occurs at 305 nm, originating from a series of mixed ππ* and Re → CO;N,N•− MLCT transitions. UV−vis transient absorption features exhibit small intensity- and band-shape changes occurring with several lifetimes in the 1−5 ps range, while TRIR bands show small intensity changes (≤5 ps) and shifts (~1 and 6−10 ps) to higher wavenumbers. These spectral changes are attributable to convoluted electronic and vibrational relaxation steps and equilibration between the two lowest triplets. Still slower changes (≥15 ps), manifested mostly by the excited-state UV band, probably involve local-solvent restructuring. Implications of the observed excited-state behavior for the development and use of Re-based sensitizers and probes are discussed
    • …
    corecore