1,439 research outputs found

    Are Early Stage Investors Biased Against Women?

    Get PDF
    We study whether early stage investors have gender biases using a proprietary data set from AngelList that allows us to observe private interactions between investors and fundraising startups. We find that male investors express less interest in female entrepreneurs compared to observably similar male entrepreneurs. In contrast, female investors express more interest in female entrepreneurs. These findings do not appear to be driven by within-gender screening/monitoring advantages or gender differences in risk preferences. Moreover, the male-led startups that male investors express interest in do not outperform the female-led startups they express interest in—they underperform. Overall, the evidence is consistent with gender biases

    Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    Full text link
    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, η∗≡B∗2R∗2/M˙V∞=600\eta_{\ast} \equiv B_{\ast}^2 R_{\ast}^{2} / \dot{M} V_{\infty} = 600. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly 10810^{8}K, high enough to emit hard (several keV) X-rays. Such \emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like σ\sigma Ori E.Comment: 5 pages, 3 figures, accepted by ApJ

    Are Early Stage Investors Biased Against Women?

    Get PDF
    We study whether early stage investors have gender biases using a proprietary data set from AngelList that allows us to observe private interactions between investors and fundraising startups. We find that male investors express less interest in female entrepreneurs compared to observably similar male entrepreneurs. In contrast, female investors express more interest in female entrepreneurs. These findings do not appear to be driven by within-gender screening/monitoring advantages or gender differences in risk preferences. Moreover, the male-led startups that male investors express interest in do not outperform the female-led startups they express interest in—they underperform. Overall, the evidence is consistent with gender biases

    Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011

    Get PDF
    The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords

    Late systolic central hypertension as a predictor of incident heart failure : the Multi-Ethnic Study of Atherosclerosis

    Get PDF
    Background: Experimental studies demonstrate that high aortic pressure in late systole relative to early systole causes greater myocardial remodeling and dysfunction, for any given absolute peak systolic pressure. Methods and Results: We tested the hypothesis that late systolic hypertension, defined as the ratio of late (last one third of systole) to early (first two thirds of systole) pressure-time integrals (PTI) of the aortic pressure waveform, independently predicts incident heart failure (HF) in the general population. Aortic pressure waveforms were derived from a generalized transfer function applied to the radial pressure waveform recorded noninvasively from 6124 adults. The late/early systolic PTI ratio (L/ESPTI) was assessed as a predictor of incident HF during median 8.5 years of follow-up. The L/ESPTI was predictive of incident HF (hazard ratio per 1% increase= 1.22; 95% CI= 1.15 to 1.29; P58.38%) was more predictive of HF than the presence of hypertension. After adjustment for each other and various predictors of HF, the HR associated with hypertension was 1.39 (95% CI= 0.86 to 2.23; P=0.18), whereas the HR associated with a high L/E was 2.31 (95% CI=1.52 to 3.49; P<0.0001). Conclusions: Independently of the absolute level of peak pressure, late systolic hypertension is strongly associated with incident HF in the general population

    The B and Be star population of NGC 3766

    Get PDF
    We present multiple epochs of Hα spectroscopy for 47 members of the open cluster NGC 3766 to investigate the long-term variability of its Be stars. Sixteen of the stars in this sample are Be stars, including one new discovery. Of these, we observe an unprecedented 11 Be stars that undergo disk appearances and/or near disappearances in our Hα spectra, making this the most variable population of Be stars known to date. NGC 3766 is therefore an excellent location to study the formation mechanism of Be star disks. From blue optical spectra of 38 cluster members and existing Strömgren photometry of the cluster, we also measure rotational velocities, effective temperatures, and polar surface gravities to investigate the physical and evolutionary factors that may contribute to the Be phenomenon. Our analysis also provides improvements to the reddening and distance of NGC 3766, and we find E(B - V ) = 0.22 ± 0.03 and (V - MV )₀ = 11.6 ± 0.2, respectively. The Be stars are not associated with a particular stage of main-sequence evolution, but they are a population of rapidly rotating stars with a velocity distribution generally consistent with rotation at 70%-80% of the critical velocity, although systematic effects probably underestimate the true rotational velocities, so that the rotation is much closer to critical. Our measurements of the changing disk sizes are consistent with the idea that transitory, nonradial pulsations contribute to the formation of these highly variable disks

    Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions

    Full text link
    We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective core mass during both hydrogen and helium burning phases. Stars with M<8 M⊙M<8\,{\rm M_\odot} become white dwarfs and cool to the point where the electrons are degenerate and the ions are strongly coupled, a realm now available to study with MESA due to improved treatments of element diffusion, latent heat release, and blending of equations of state. Studies of the final fates of massive stars are extended in MESA by our addition of an approximate Riemann solver that captures shocks and conserves energy to high accuracy during dynamic epochs. We also introduce a 1D capability for modeling the effects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernovae properties. These capabilities are exhibited with exploratory models of pair-instability supernova, pulsational pair-instability supernova, and the formation of stellar mass black holes. The applicability of MESA is now widened by the capability of importing multi-dimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, and four new software tools -- MESAWeb, MESA-Docker, pyMESA, and mesastar.org -- to enhance MESA's education and research impact.Comment: 64 pages, 61 figures; Accepted to AAS Journal

    Proteomic analyses of native brain KV4.2 channel complexes

    Get PDF
    Somatodendritic A-type (I(A)) voltage-gated K(+) (K(V)) channels are key regulators of neuronal excitability, functioning to control action potential waveforms, repetitive firing and the responses to synaptic inputs. Rapidly activating and inactivating somatodendritic I(A) channels are encoded by K(V)4 α subunits and accumulating evidence suggests that these channels function as components of macromolecular protein complexes. Mass spectrometry (MS)-based proteomic approaches were developed and exploited here to identify potential components and regulators of native brain K(V)4.2-encoded I(A) channel complexes. Using anti-K(V)4.2 specific antibodies, K(V)4.2 channel complexes were immunoprecipitated from adult wild type mouse brain. Parallel control experiments were performed on brain samples isolated from (K(V)4.2(−/−)) mice harboring a targeted disruption of the KCND2 (K(V)4.2) locus. Three proteomic strategies were employed: an in-gel approach, coupled to one-dimensional liquid chromatography-tandem MS (1D-LC-MS/MS), and two in-solution approaches, followed by 1D-or 2D-LC-MS/MS. The targeted in-gel 1D-LC-MS/MS analyses demonstrated the presence of the K(V)4 α subunits (K(V)4.2, K(V)4.3 and K(V)4.1) and the K(V)4 accessory, KChIP (KChIPI-4) and DPP (DPP6 and 10), proteins in native brain K(V)4.2 channel complexes. The more comprehensive, in-solution approach, coupled to 2D-LC-MS/MS, also called Multidimensional Protein Identification Technology (MudPIT), revealed that additional regulatory proteins, including the K(V) channel accessory subunit K(V)β1, are also components of native brain K(V)4.2 channel complexes. Additional biochemical and functional approaches will be required to elucidate the physiological roles of these newly identified K(V)4 interacting proteins

    The Structure of the Homunculus. III. Forming a Disk and Bipolar Lobes in a Rotating Surface Explosion

    Full text link
    We present a semi-analytic model for shaping the nebula around eta Carinae that accounts for the simultaneous production of bipolar lobes and an equatorial disk through a rotating surface explosion. Material is launched normal to the surface of an oblate rotating star with an initial kick velocity that scales approximately with the local escape speed. Thereafter, ejecta follow ballistic orbital trajectories, feeling only a central force corresponding to a radiatively reduced gravity. Our model is conceptually similar to the wind-compressed disk model of Bjorkman & Cassinelli, but we modify it to an explosion instead of a steady line-driven wind, we include a rotationally-distorted star, and we treat the dynamics somewhat differently. Continuum-driving avoids the disk inhibition that normally operates in line-driven winds. Our model provides a simple method by which rotating hot stars can simultaneously produce intrinsically bipolar and equatorial mass ejections, without an aspherical environment or magnetic fields. Although motivated by eta Carinae, the model may have generic application to other LBVs, B[e] stars, or SN1987A's nebula. When near-Eddington radiative driving is less influential, our model generalizes to produce bipolar morphologies without disks, as seen in many PNe.Comment: ApJ accepted, 9 page
    • …
    corecore