2,393 research outputs found
US GLOBEC NWA/Georges Bank: Processes Controlling Abundance of Dominant Copepods on Georges Bank: Local Dynamics and Large-scale Forcing
A fundamental goal of Biological Oceanography is to understand how underlying biological-physical interactions determine abundance of marine organisms. For animal populations, it is well known that factors controlling survival during early life stages (i.e., recruitment) are strong determinants of adult population size, but understanding these processes has been difficult due to model and data limitations. Recent advances in numerical modeling, together with new 3D data sets, provide a unique opportunity to study the biological-physical processes controlling zooplankton population size. This project uses an existing state-of-the-art biological/physical numerical model (FVCOM) together with the recently processed large 3D data set from the Georges Bank GLOBEC program to conduct idealized and realistic numerical experiments that explore the detailed mechanisms controlling seasonal evolution of spatial patterns in dominant zooplankton species on Georges Bank. Hypotheses that address how dominant copepod species populations are maintained on the bank, including local dynamics and large-scale forcing will be examined. A specific goal is to determine whether the observed characteristic seasonal and spatial pattern of each species (long-term and inter-annual) is predictable from the interaction between its characteristic life-history traits and physical transport. The extent to which the copepod populations are controlled by food-availability (bottom-up) or predation (top-down) processes will be examined, including the influence of Warm Slope Water versus Labrador Slope Water (NAO-dependent) on nutrient influx through the Northeast Channel and subsequent upwelling and biological enhancement on the bank. Self-sustainability of each species population on the bank itself and in the Gulf of Maine will be studied by controlling immigration from specific source regions. Large-scale forcing including NAO and catastrophic global warming (e.g. complete polar ice melt) will be examined explicitly by forcing the model at the boundaries, using scenarios based on basin-scale data and from concurrent basin-scale modeling efforts. This modeling study will provide new insights into the role of local and large-scale processes controlling zooplankton abundance in the ocean. The dominant copepod species to be studied include small species that are the dominant prey for larval cod and haddock in this region, thus providing critical information for concurrent larval fish modeling studies. This detailed, process-oriented, regional-scale modeling with boundary forcing will lay the groundwork for integration with models of the entire ocean basin. The resulting model will be a legacy of the GLOBEC Georges Bank program by providing a powerful new tool for understanding how local and large-scale forcing interact to control plankton production in the sea. Results of the proposed work will be broadly disseminated to the general oceanographic community, the fishing industry, K-12 institutions, and to the population at large, through web-based servers using existing infrastructure. Web-based users will be able to access model results and run the model using chosen parameter settings to obtain predictions of currents, hydrography, and plankton abundance patterns given selected climate forcing scenarios. Collaboration with the WHOI/UMASS COSEE program will foster communication with K12 students and the public both nationally and internationally
Collaborative Research: Interannual Variability of Coastal Phytoplankton Blooms in the Gulf of Maine and Their Relationships to Local and Remote Forcings
The aim of this proposal is to explore the interaction of remote climate based forcing with local forcing to impact phytoplankton blooms in coastal and shelf regions with a coupled biological-physical model. Phytoplankton bloom dynamics are a classic example of biological-physical interactions in the ocean (Gran and Braarud, 1935; Sverdrup, 1953). Yet it is still a challenge to identify the dominant processes controlling the interannual variability of phytoplankton blooms in coastal and shelf seas where multiple-scale biological and physical processes interact. The unstructured-grid, finite-volume, coastal ocean model (FVCOM, built within the GLOBEC Georges Bank Program) bridges the multi-scale physical processes of the Gulf of Maine and includes both local and remote forcing. Twelve years of prognostic simulation and assimilation experiment products, with careful comparison/validation with field measurements, provide a unique background and tools with which to explore the interannual variability of ecosystem dynamics in the Gulf of Maine. This proposal will examine relationships between the dynamics of spring and fall phytoplankton blooms in the Gulf and local and remote forcing. A specific focus is the variability Scotian Shelf Water and Slope Water inflows. A series of numerical experiments will be conducted to test long-standing and newly-proposed hypotheses, including the impact of the North Atlantic Oscillation as it influences Warm Slope Water versus Labrador Slope Water dynamics, which in turn affect nutrient fluxes to the Gulf of Maine and vertical fluxes between surface and deep waters. The influence of surface water freshening (related to Scotian Shelf Water inflow, in turn believed to be affected by global warming) on the vertical density structure of the water column, winter convection, and consequently, the timing/magnitude of blooms, will also be addressed. The process-oriented coupled biological and physical model experiments will focus on the date-rich period 1998-2001 when pronounced large-scale forcing conditions occurred. Providing new insights into the influence of large-scale forcing on the dynamics and productivity of coastal ocean ecosystems will be a significant advance in our understanding of phytoplankton blooms dynamics, which has been traditionally focused on local forcing and seasonal changes. The project will provide a web-based open archive of the 1995-2006 coupled model hourly physical and biological output, and produce a tested coupled biological-physical model system available for other ongoing (e.g. ECOHAB) and future ecosystem studies in the Gulf of Maine and other coastal oceans. The web-based ocean forecast model system being developed by UMASSD-WHOI will benefit directly from this project by helping to optimize the design of ocean observatories and help shape the future of interdependent model-observing systems.Broader Impacts: Results of the proposed work will be broadly disseminated to the general research, undergraduate and graduate education communities, K-12 institutions, and to the interested public through web-based servers using existing infrastructure at the proposers\u27 institutions. Web-based users will be able to access project description, scientific results, model input and output archives, animations of various physical and biological fields, etc. Collaboration with the New Bedford SEALAB Marine Science Education Center and the WHOI/UMASS COSEE program will foster communication with K-12 teachers and students and the public both nationally and internationally
Variability of the coastal current and nutrient pathways in the eastern Gulf of Maine
The eastern Maine coastal current flows southwestward, carrying cold and nutrient-rich waters along the coast from the tidally stirred eastern gulf toward the central and western gulf, where in summer the waters are warmer and more stratified. The current typically turns offshore before reaching Penobscot Bay, near the central coast, at a location determined largely by the distribution of dense slope water in Jordan Basin. The slope water, which enters the gulf as a deep inflow from the Atlantic Ocean, thus plays a major role in determining the intensity, direction and timing of the delivery of nutrients to the interior gulf. In this paper, we use data from two cruises in August 1987 to examine the variability and nutrient transport of the coastal current, especially to show the important physical linkages between the deep slope water, the structure of the coastal current, and its likely significant effect on biological productivity in the gulf
Over-Winter Oceanographic Profiles in Jones Sound, Canadian Arctic Archipelago, November 1961 – June 1962: Temperature, Salinity, Oxygen, and Nutrients
Vertical profiles of temperature, salinity, dissolved oxygen, and inorganic nutrients (nitrate, phosphate, and silicate) were measured at five depths (2, 10, 25, 50, and 80 m) beneath the ice off the southern shore of Jones Sound, north of Devon Island, through the winter of 1961 – 62. Additional data were collected from the north side of the sound off Grise Fiord, Ellesmere Island, on 13 May 1962 and 12 May 1969. The over-winter data set is used here to characterize the transition of Arctic waters from autumn to late-spring–early summer. Minimum temperatures (< -1.8˚C) and maximum salinities (> 33.2) were reached in late winter and early spring. Oxygen levels declined over the same fall-to-late-spring period and increased markedly in June. Nitrate, phosphate, and silicate concentrations all increased from their lowest values in fall to overall highest values in late spring, after which each nutrient showed evidence of biological uptake. A deep pycnocline, between 50 and 80 m, persisted from November to February, isolating a bottom-water layer that showed evidence of microbially mediated silicate regeneration (silicate concentrations increased, phosphate decreased, and nitrate concentrations were variable). In early spring (19 March to 1 May), nitrate concentrations dropped abruptly at all depths from more than 10 μM to less than 7 μM, apparently in response to the growth of ice algae. Temperature-salinity (T-S) analyses found little evidence of significant water-mass replacements during the study period, but interpretations of coherent variations in nutrient concentrations, as well as observed salinities slightly different from those expected on the basis of ice formation, suggest otherwise. Comparison of results from north of Devon Island with those from sampling off Grise Fiord in May 1962 indicate both higher salinities and lower nutrient concentrations at the latter site; however, data collected at the same site off Grise Fiord in May 1969 showed lower salinities and more variable nutrient concentrations than in 1962.Les profils verticaux de la température, de la salinité, de l’oxygène dissous et des éléments nutritifs inorganiques (nitrate, phosphate et silicate) ont été mesurés à cinq profondeurs (2, 10, 25, 50 et 80 m) en-dessous de la glace, sur la rive sud du détroit de Jones, au nord de l’île Devon, au cours de l’hiver 1961-1962. Des données supplémentaires ont été recueillies à partir du côté nord du détroit à la hauteur du fjord Grise, à l’île d’Ellesmere, le 13 mai 1962 et le 12 mai 1969. L’ensemble de données prélevées l’hiver sert à caractériser ici la transition des eaux de l’Arctique de l’automne à la fin du printemps et au début de l’été. Les températures minimales (< -1,8 ˚C) et les salinités maximales (> 33,2) ont été atteintes à la fin de l’hiver et au début du printemps. Au cours de cette même période de l’automne à la fin du printemps, les taux d’oxygène ont baissé, puis ont connu une hausse considérable en juin. Les concentrations de nitrate, de phosphate et de silicate ont toutes connu une augmentation par rapport à leurs valeurs les plus basses de l’automne jusqu’à leurs valeurs générales les plus élevées à la fin du printemps, après quoi chaque élément nutritif a montré des signes d’implantation biologique. Une pycnocline profonde, soit entre 50 et 80 m, a persisté de novembre à février, ce qui a eu pour effet d’isoler une couche d’eau de fond laissant voir des signes de régénération du silicate assistée par les microbes (les concentrations de silicate se sont accrues, celles de phosphate ont baissé et les concentrations de nitrate étaient variables). Au début du printemps (du 19 mars au 1er mai), les concentrations de nitrate ont chuté considérablement à toutes les profondeurs de plus de 10 μM à moins de 7 μM, apparemment en réaction à la croissance des algues des glaces. Les analyses de température et de salinité (T-S) ont permis de déceler peu de signes d’importantes substitutions de la masse d’eau au cours de la période visée par l’étude, mais l’interprétation des variantes cohérentes caractérisant les concentrations d’éléments nutritifs, de même que les salinités observées qui différaient légèrement de celles escomptées en fonction de la formation des glaces, laissent entendre autrement. La comparaison des résultats du nord de l’île Devon avec les résultats de l’échantillonnage prélevé au fjord Grise en mai 1962 indique dans les deux cas des concentrations de salinité supérieures et des concentrations d’éléments nutritifs inférieures au dernier emplacement. Toutefois, les données recueillies au même emplacement du fjord Grise en mai 1969 ont montré des salinités moins élevées et des concentrations d’éléments nutritifs plus variables qu’en 1962
Collaborative Research: GLOBEC-01: Tidal Front Mixing and Exchange on Georges Bank: Controls on the Production of Phytoplankton, Zooplankton, and Larval Fishes
Georges Bank supports a rich fishery because: (1) large portions of the bank are shallow enough that light-limitation of phytoplankton is usually not important; (2) deep waters rich in inorganic nutrients are available for mixing onto the bank; and (3) the Bank\u27s clockwise circulation can retain the planktonic stages of important fish species. The tidally mixed front (TMF) is central to the productivity of Georges Bank through the processes of nutrient injection in the north and retention of larvae on the south flank. These two regions are connected by a circulation pathway along the front in which nutrients lead to phytoplankton and zooplankton growth, creating a donut-shaped region of high production surrounding the crest. It is suggested that the productivity of this pathway is the result of northern edge nutrient injections and is susceptible to climatic influences on nutrient supply in that region. The overall objective of this project is to understand the processes within the TMF that sustain the biological productivity of Georges Bank and the success of the target species, cod and haddock. This requires understanding how mixing and circulation within the TMF supplies new nutrients, supports primary production, and retain larvae. GLOBEC dye tracer experiments have, for the first time, measured directly the near-bottom Lagrangian circulation and mixing in the TMF. Results show that vertical mixing in the front, and the on-bank flow through the base of the TMF, are dynamically connected. This study is examining the 3-dimensional dynamics of the TMF based on these measurements. Models will help assess how the strength of the across- and along-isobath circulation sets time and space scales compatible with the development of cod and haddock larvae. This project consists of a mix of data analysis and modeling activities. First, dye dispersion data and simple shear dispersion models are being used to understand the link between cross-bank flow and vertical mixing. Second, a finite-volume coastal ocean model (FVCOM) will be used to calculate the temporal and spatial structure of nutrient flux into the TMF, contrasting northern and southern flank inputs. A coupled FVCOM- NPZ (nutrient-phytoplankton-zooplankton) model are being used to test the following hypotheses: (i) Nutrient injections in the north are advected around the crest of the bank and lead to a plume of elevated phytoplankton and zooplankton production. (ii) The plume enriches the area of larval entrainment on the south flank. If the above statements are true, then production in the plume can be altered by the nutrient content of source waters in the Northeast Channel of the Gulf of Maine, and these changes will affect the feeding environment of larval cod and haddock. Finally, models incorporating the measured 3-D flow and turbulence fields are being used to examine spatial patterns of larval retention and define the kinds of environmental transitions that larvae experience during this process
Phytoplankton and Hydrography of the Kennebec Estuary, Maine, USA
The biomass, abundance and species composition of phytoplankton in the Kennebec estuary, Maine, USA, were investigated in relation to hydrography and Light regime during 7 seasonal survey cruises. The salinity distribution ranged from 32 at the mouth to between 0 and 5 at the head, depending on the magnitude of freshwater discharge at the time of each survey. Maximum Vertical salinity and temperature gradients were observed at the mouth. while local tidal mixing, combined with the freshwater flow, produced a well-mixed water column at the head of the estuary. The middle portion of the estuary was stratified on flooding and ebbing tides, but was vertically well mixed at high and low tides. Phytoplankton biomass was lowest in winter (chlorophyll a approximate to 1 mu g l(-1)) and highest in summer (up to 10 mu g l(-1)) The phytoplankton species assemblages at the seaward and the riverine ends of the estuary were made up of taxa with corresponding salinity preferences. Both cell numbers and biomass (chlorophyll a) exhibited a bimodal distribution along the length of the estuary in the warmer months, with the middle portions of the estuary having depressed phytoplankton standing stocks compared with the seaward and landward ends. This bimodal distribution was related to Light limitation and nutrient regeneration in the middle portion of the estuary and to the production of and advective contributions of phytoplankton from both the freshwater and seaward ends
Collaborative Research: Origins of Cods on Georges Bank: Contributions of Early Developmental Stages for the Scotian Shelf
Recent work in the Georges Bank-Gulf of Maine area has documented significant, and apparently episodic, fluxes of Scotian Shelf Water (SSW) from the Nova Scotian continental shelf to Georges Bank. SSW is a relatively cold and fresh water mass with a significant component from the St. Lawrence River, and is commonly identifiable with temperature-salinity analyses of hydrographic data and in satellite images of sea surface temperature. One such flux episode was observed last March (1997) in satellite imagery and from shipboard hydrographic sampling on Georges Bank. Qualitative at-sea analyses of ichthyoplankton sampled on the March cruise revealed a remarkably tight association between abundances of gadid eggs and the distribution of SSW suggesting, along with other lines of evidence, that most of those eggs were spawned on the Scotian Shelf and were advected with the SSW water mass to Georges Bank. The fundamental question thus arises: to what extent are cod on Georges Bank imported to the Bank as early development stages by advection from Canadian waters to the east?
The goal of this research is to answer the above question. The approach will be two tiered:
(1) Drs. Townsend and Radtke will perform retrospective elemental analyses of otoliths from archived larval cod samples, as well as of ichthyoplankton samples to be collected in 1998 and 1999 as part of the continuing Georges Bank GLOBEC project, analyzing them for Sr/Ca ratios, using an X-ray electron microprobe, and elemental fingerprints , using UV lazer ablation inductively coupled plasma mass spectroscopy (ICPMS).
(2) They will also assess the genetic identity of the larvae relative to larval and adult populations from Georges Bank and from the Scotian Shelf using nuclear DNA microsatellite techniques. They will first verify the elemental composition of otoliths from cod larvae known to have been spawned in the two locations. This elemental analyses will be combined with laboratory rearing experiments of larvae to determine the effects of temperature, salinity, feeding, and growth rates on the incorporation of elements in the otoliths. DNA based techniques will be used to identify individuals in these common-garden rearing experiments. The second step will be to identify the origin of larvae based on individual DNA profiles generated by characterizing nuclear DNA microsatellites, a new class of genetic markers that they have used to differentiate Georges Bank cod from those of Scotian Shelf waters.The intent in using the two different, independent approaches is to be able to identify the spawning locations of the larvae and track their transport in relation to hydrographic characteristics of water masses in the region
- …