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1. INTRODUCTION 

Let X= L,(Q, d, p) and let %? c X be an L,-closed, convex subset. We 
saygE% is a best L,-approximant tofEXif IIg-fll,=inf 11/z--fill, hi%?. 
For many important choices of 97, such as ‘$7 = L,(sZ, ~8, p), where 99 is a 
sub-o-algebra of d, or V the set of nondecreasing functions on Q = [0, 11, 
best L,-approximants exist to all VEX. It is rare, however, that best 
L,-approximants are uniquely determined. Denote by pi(fl%) the set of all 
best L,-approximants to f by elements of V. In this paper we study the 
question: If fi and fi are “close,” are the sets ~Ll(fiIW and h(f21V 
“close” in Hausdorff metric? 

2. APPROXIMATION BY ELEMENTS OF L,(O, W, Jo) 

Let 9 be a sub-o-algebra of ZZ!, and let % = L,(R, B, CL). Shintani and 
Ando [4, Theorem 23 proved the existence of best L,-approximations to 
f E X= L,(Q, d, p) by elements of %?. Furthermore, they characterized the 
set ,~i(f 1%) in the following way: there exist functions f and f in V such 
that g E pl(f 1’8) if and only if g E 55’ and f <g <f on Sz. In particular, 
f=sup{g: gEpLl(flW} andf=inf{g: gc&,(f lW>- 

If A is a subset of a metric space M with distance d, define 
dist(x, A) = inf(d(x, a): UEA}. If A and B are subsets of M, define the 
Hausdorff distance between them by dist(A, B) = max{ sup,, A dist(a, B), 
sup,..dist(b, A)}. 

The most natural question at this point is: Iff,, *fin L, as n + co, does 
dist(~Ll(fnl~),~L(fl~))+O as n-+co, where d(g,h)=llg-hll,? The 
following example shows in general the answer is no. 
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EXAMPLE 2.1. Let Sz = [0, 1 ] with Lebesgue measure and 9# = { 4, Sz }. 
Then g is a-measurable if and only if g is constant. Delinef(x) by f(x) = 1 
on [0, $) and f(x) =0 on [i, 11. For n> 3, define f,(x) by f*(x)= 1 on 
[0, i+ l/n) and f,(x) =0 on [i+ l/n, 11. Then clearly f, -+ f in L,, and 
each f, has a unique best L,-approximant defined by g,(x) = 1 on [O, 11. 
But f(x) has many best L,-approximants, defined by g,(x) = c on [0, 11, 
where O<c<l. In particular, g,Epl(f 1%) and dist(g,,~,(f,I%))=l for 
all n 2 3. Hence dist(pi(f 1 w), pl(fn 1 V)) > 1 for all n > 3. (Clearly this is an 
equality.) 

We can, however, prove the following semi-continuity result. 

THEOREM 2.2. Let f, + f in L, as n + co and let E > 0. There is an N > 0 
such that dist(g,pi(f IV))<Efor alZgEp,(f,jV) with n>N. 

Prooj By Shintani and Ando [4, Corollary 51, we have fj, v f-7 in 
L, as n--+ cc and fn ~\f+f in L, as n-+ cc. Choose N such that 
llfn v f-f/ii <c/2 and l/J, A f-J-11 i <e/2 for n 3 N. Now if n 2 N and 
gE~~(f,)~),defineg*=fvgr\~.Theng*E~L,(fI~).Sincef,~gd~*,it 
follows that g* =g except possibly on the sets A = {f”<f) and 
B= {j’,, >f). Hence 

llg*-gll1= JAuB lg*-gl dpsjA ~fn-f~ ++s, r.tz-fl do 

and the theorem is proved. 

If we use the uniform metric defined by d( g, h) = ((g - h(j ocI, we may 
obtain the full continuity result. 

THEOREM 2.3. Let fn -+ f uniformly as n -+ co. Then dist(p,(f,)%), 
pLl(f 1%)) -0 as n -+ co.. 

Proof: By Landers and Rogge [3, Theorem 181 the mappings f + f 
and f +f are monotone, which implies fn +f and fn -+ f uniformly as 
n -+ co. If E > 0, choose N such that Ifa -fl <E and 11” -fl <E on Q for 
n~N.ThenifgE~,(fI~),defineg*=fvg~~.Theng*;~,(f,IV)and 
lg*-gl<e on a for naN. IfgE~,(f,l%), define g*=fvgAf. Then 
g*Ep,(f(W) and (g*-gg(<& on Q for n>N. Hence dist(lLl(fn(%?), 
pl(fl%?))<~ for n>N. 
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3. APPROXIMATION BY NONDECREASING FUNCTIONS 

Let N be the set of nondecreasing functions on [0, 11, and suppose 
fgL,[O, 11. The set p,(flJr/-) of all best &-approximations to f by 
elements of M is characterized in [ 1, 21 as follows. Define f and f by 
.0x)=suP{q(x):qEk(fIJ-)I and f(x)=inf{q(x):qE~I(fIM)). It is 
shown in [3, Theorem 141 that j’ and f are in p,(fl M). Let U= U Ui, 
where Ui is a maximal open interval on which both f and fare constant 
and f # f. Define h,: U + R by 

if f(x) 23(x) 
if f(x) G J-c4 

if f(x) <f(x) <f(x), 

and, if x E Ui = (u;, u,), define kf by 

k,(x) = j-: h,(t) dt. 
u, 

Then for any q E N, we have q E pr (f ( JV) if and only if 

(i) fbg<fon [O, 11, and 

(ii) q is constant on components of { [kf#O] n U,}, i> 1. 

We use the notation p(A; [a, b]) to denote p(A)/(b - a), the relative 
measure of A in [a, b]. The following lemma was proved in [2] and will 
be used later in this paper. 

LEMMA 3.1. Zf qEpl(flN) and q is not constant at SE [0, 11, then 

(1) ~(Cf~q];[s,t])~~fors<t~l,and 

(2) p([fGq]; Ct,s])a+for O<t<s. 

The main result of this section is an easy consequence of the following 
lemma. 

LEMMA 3.2. Suppose E > 0 and.f, g E L, [0, 11. Zf If(x) -g(x)1 < E for all 
O<x<l, then for any f*Ep,(f IN) there is a g*Epl(glN) so that 
If*(x)-g*(x)/ <g&for all O<x< 1. 

Proof: We have by [3, Theorem 181 that [g(x)-3(x)1 <.a and 
/g(x)--f(x)/ <E for all O,<x,< 1. 
- Let Z? and Ui, for i > 1, be defined as above for f, and let V and Vi, for 

i > 1, be defined as above for g. Let U(E) = UisICEj Ui, where Z(E) is the set 
of indices such that f(x) -f(x) > 6s for x E Uj. Since f is continuous from 
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the right and 1 is continuous from the left, it follows that f(x) -f(x) > 6s 
for XE Oi. For f* EP,(~] J) we define g* as follows: if XE U(E), then 
g*(x) =g(x) v f*(x) A g(x); if x < y for all YE U(E), then g*(x) =g(x); 
and otherwise, 

g*(x) = ( sup g*(Y)) v g(x). 
Y<X 

YE WE) 

It is clear from the definition of g* that g(x) <g*(x) <g(x) for all 
06x< 1. Thus g*(x) will be in p,(g]X) provided 

g* is constant on components of { Vi n [k, # 0] >, i 3 1. (1) 

Suppose (1) is not true. Then there is an x0 E Vi for some j so that 
,%,(x0) # 0 and g* is not constant at x0. Since g* is constant on maximal 
components of the complement of U(E), where U(E) is equal to either U(E) 
or U(E) u { 1 }, we have x,, E U(E) and, from the definition of g*, f* is not 
constant at x0. It follows from Corollary 2 and Theorem 5 of [2] that 
either f * has a jump discontinuity at x0 or f(x) =f(x) =f(x) almost 
everywhere in an interval containing x0. Since f(x) #f(x) for all x E U(E), 
we have that f *, and hence g*, has a jump discontinuity at x0. Clearly 
since 7(x,) -f(x,,) > 6s, we have that g(x,) -g(x,,) > 4s and hence, 
g(x) -g(x) > 46 for all XE V,. It follows that f(x) --f(x) > 2~ for all XE Vi, 
and thus p( V, - U) = 0. Also, it is shown in [2] that 

ACf<f<fln vj)=” and ACg<g<El n VJ=O. (2) 

We now show that for almost all XE Vjn U we have 

h,(x) = h,(x). (3) 

If h,(x) = ?, then f(x) > g(x) - E 2 g(x) - E >f(x) - 2~ >f(x). In view of 
(2) we have f(x) >f(x) f or almost all such x, implying &(x) = 1. On the 
other hand, if hf(x) = 1, then g(x) >f(x) - E >f(x) - E >g(x) - 2s >g(x). 
In view of (2) we have g(x) > g(x) for almost all such x, implying h,(x) = 1. 
The proof that h,(x) = - 1 if and only if h,(x) = - 1 for almost all x for 
which h,(x) = - 1 or h,(x) = - 1 is similar, and (3) follows. 

Now if Vi = (w, z) then G = f(g + g) is not constant at w. From 
Lemma 3.1 we have p([g>G]; [w,x,])> 4, and in view of (2), 
ACg>Sl; Cw x01)2 1, implying 

I xo hg( t) dt > 0. 
11’ 

(4) 
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Also since f * is not constant at x0, we have from Lemma 3.1 that 
p([f<f*]; [w,x,])&+. In view of (2j, ~*([f<f]; [w,xJ)>,$, implying 
Sbvro, n ” f h (t) dt < 0. It follows from (3) and the fact that (V, - U) = 0 that 

s x” hJ t) dt < 0. 
H 

(5) 

From (4) and (5) we see that J”,“h,(t) dt =O, implying that k,(x,)=O, a 
contradiction. Thus (1) is proved and g* E pl(g 1 JV). 

We now show that (g* -f*l < 8~ for all x E [0, 11. We have that 
If(x) -g(x)1 <E and IS(x) -g(x)1 <E for all XE [O, 11. If XE U(E), then 
g*(x) equals f *(x), g(x), or g(x). If g*(x) = g(x) then from the definition 
of g* we have .2(x) <f*(x) <f(x). Thus Ig*(x) -f*(x)\ = /g(x) -f*(x)/ 
4 /g(x)-3(x)1 <E. If g*(x)=g(x), then again from the definition of g* 
we have J(x) <f*(x) <g(x).- Thus Jg*(x) -f *(x)1 = lg(x) - f *(x)1 < 
(g(x) -f(x)1 <E. On the bther hand, if x E U(E), then [Jr(x) -f(x)1 d 6.5 
Thus Is*(x) -g*(x)1 < max(f(x), g(x)) - min(f(x), g(x)) < 8~ and the 
lemma is proved. 

The following theorem is an easy consequence of Lemma 3.2. 

THEOREM 3.3. For any E>O, iff, geL, [O,l] satisfy If(x)-g(x)1 < 
E/8 for all OGxQl, then dist(p,(flN), pl(gJJ”))<E in the uniform 
metric. 
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