Sets of Best L_{1}-Approximants

David A. Legg and Douglas W. Townsend
Department of Mathematical Sciences, Indiana University-Purdue University, Fort Wayne, Indiana 46805, U.S.A.
Communicated by R. Bojanic

Received October 5, 1987

1. Introduction

Let $X=L_{1}(\Omega, \mathscr{A}, \mu)$ and let $\mathscr{C} \subseteq X$ be an L_{1}-closed, convex subset. We say $g \in \mathscr{C}$ is a best L_{1}-approximant to $f \in X$ if $\|g-f\|_{1}=\inf \|h-f\|_{1}, h \in \mathscr{C}$. For many important choices of \mathscr{C}, such as $\mathscr{C}=L_{1}(\Omega, \mathscr{B}, \mu)$, where \mathscr{B} is a sub- σ-algebra of \mathscr{A}, or \mathscr{C} the set of nondecreasing functions on $\Omega=[0,1]$, best L_{1}-approximants exist to all $f \in X$. It is rare, however, that best L_{1}-approximants are uniquely determined. Denote by $\mu_{1}(f \mid \mathscr{C})$ the set of all best L_{1}-approximants to f by elements of \mathscr{C}. In this paper we study the question: If f_{1} and f_{2} are "close," are the sets $\mu_{1}\left(f_{1} \mid \mathscr{C}\right)$ and $\mu_{1}\left(f_{2} \mid \mathscr{C}\right)$ "close" in Hausdorff metric?

2. Approximation by Elements of $L_{1}(\Omega, \mathscr{B}, \mu)$

Let \mathscr{B} be a sub- σ-algebra of \mathscr{A}, and let $\mathscr{C}=L_{1}(\Omega, \mathscr{B}, \mu)$. Shintani and Ando [4, Theorem 2] proved the existence of best L_{1}-approximations to $f \in X=L_{1}(\Omega, \mathscr{A}, \mu)$ by elements of \mathscr{C}. Furthermore, they characterized the set $\mu_{1}(f \mid \mathscr{C})$ in the following way: there exist functions f and \underline{f} in \mathscr{C} such that $g \in \mu_{1}(f \mid \mathscr{C})$ if and only if $g \in \mathscr{C}$ and $\underline{f} \leqslant g \leqslant f$ on Ω. In particular, $\vec{f}=\sup \left\{g: g \in \mu_{1}(f \mid \mathscr{C})\right\}$ and $\underline{f}=\inf \left\{g: g \in \mu_{1}(f \mid \mathscr{C})\right\}$.

If A is a subset of a metric space M with distance d, definc $\operatorname{dist}(x, A)=\inf \{d(x, a): a \in A\}$. If A and B are subsets of M, define the Hausdorff distance between them by $\operatorname{dist}(A, B)=\max \left\{\sup _{a \in \mathcal{A}} \operatorname{dist}(a, B)\right.$, $\left.\sup _{b \in B} \operatorname{dist}(b, A)\right\}$.
The most natural question at this point is: If $f_{n} \rightarrow f$ in L_{1} as $n \rightarrow \infty$, does $\operatorname{dist}\left(\mu_{1}\left(f_{n} \mid \mathscr{C}\right), \mu_{1}(f \mid \mathscr{C})\right) \rightarrow 0$ as $n \rightarrow \infty$, where $d(g, h)=\|g-h\|_{1}$? The following example shows in general the answer is no.

Example 2.1. Let $\Omega=[0,1]$ with Lebesgue measure and $\mathscr{B}=\{\phi, \Omega\}$. Then g is \mathscr{B}-measurable if and only if g is constant. Define $f(x)$ by $f(x)=1$ on $\left[0, \frac{1}{2}\right)$ and $f(x)=0$ on $\left[\frac{1}{2}, 1\right]$. For $n \geqslant 3$, define $f_{n}(x)$ by $f_{n}(x)=1$ on [$0, \frac{1}{2}+1 / n$) and $f_{n}(x)=0$ on $\left[\frac{1}{2}+1 / n, 1\right]$. Then clearly $f_{n} \rightarrow f$ in L_{1}, and each f_{n} has a unique best L_{1}-approximant defined by $g_{n}(x)=1$ on $[0,1]$. But $f(x)$ has many best L_{1}-approximants, defined by $g_{c}(x)=c$ on $[0,1]$, where $0 \leqslant c \leqslant 1$. In particular, $g_{0} \in \mu_{1}(f \mid \mathscr{C})$ and $\operatorname{dist}\left(g_{0}, \mu_{1}\left(f_{n} \mid \mathscr{C}\right)\right)=1$ for all $n \geqslant 3$. Hence $\operatorname{dist}\left(\mu_{1}(f \mid \mathscr{C}), \mu_{1}\left(f_{n} \mid \mathscr{C}\right)\right) \geqslant 1$ for all $n \geqslant 3$. (Clearly this is an equality.)

We can, however, prove the following semi-continuity result.
Theorem 2.2. Let $f_{n} \rightarrow f$ in L_{1} as $n \rightarrow \infty$ and let $\varepsilon>0$. There is an $N>0$ such that $\operatorname{dist}\left(g, \mu_{1}(f \mid \mathscr{C})\right)<\varepsilon$ for all $g \in \mu_{1}\left(f_{n} \mid \mathscr{C}\right)$ with $n \geqslant N$.

Proof. By Shintani and Ando [4, Corollary 5], we have $f_{n} \vee f \rightarrow f$ in L_{1} as $n \rightarrow \infty$ and $\underline{f}_{n} \wedge \underline{f} \rightarrow \underline{f}$ in L_{1} as $n \rightarrow \infty$. Choose N such that $\left\|\vec{f}_{n} \vee \vec{f}-\vec{f}\right\|_{1}<\varepsilon / 2$ and $\left\|f_{n} \wedge \underline{f}-\underline{f}\right\|_{1}<\varepsilon / 2$ for $n \geqslant N$. Now if $n \geqslant N$ and $g \in \mu_{1}\left(f_{n} \mid \mathscr{C}\right)$, define $g^{*}=\underline{f} \vee g \wedge \bar{f}$. Then $g^{*} \in \mu_{1}(f \mid \mathscr{C})$. Since $f_{n} \leqslant g \leqslant \bar{f}_{n}$, it follows that $g^{*}=g$ except possibly on the sets $A=\left\{\underline{f}_{n}<f\right\}$ and $B=\left\{f_{n}>f\right\}$. Hence

$$
\begin{aligned}
\left\|g^{*}-g\right\|_{1} & =\int_{A \cup B}\left|g^{*}-g\right| d \mu \leqslant \int_{A}\left|\underline{f}_{n}-\underline{f}\right| d \mu+\int_{B}\left|\bar{f}_{n}-\bar{f}\right| d \mu \\
& =\int_{A}\left|\underline{f}_{n} \wedge \underline{f}-\underline{f}\right| d \mu+\int_{B}\left|\bar{f}_{n} \vee \bar{f}-\bar{f}\right| d \mu<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

and the theorem is proved.
If we use the uniform metric defined by $d(g, h)=\|g-h\|_{\infty}$, we may obtain the full continuity result.

Theorem 2.3. Let $f_{n} \rightarrow f$ uniformly as $n \rightarrow \infty$. Then $\operatorname{dist}\left(\mu_{1}\left(f_{n} \mid \mathscr{C}\right)\right.$, $\left.\mu_{1}(f \mid \mathscr{C})\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. By Landers and Rogge [3, Theorem 18] the mappings $f \rightarrow f$ and $f \rightarrow \underline{f}$ are monotone, which implies $\bar{f}_{n} \rightarrow \bar{f}$ and $f_{n} \rightarrow \underline{f}$ uniformly as $n \rightarrow \infty$. If $\varepsilon>0$, choose N such that $\left|f_{n}-\bar{f}\right|<\varepsilon$ and $\left|f_{n}-f\right|<\varepsilon$ on Ω for $n \geqslant N$. Then if $g \in \mu_{1}(f \mid \mathscr{C})$, define $g^{*}=f \vee g \wedge \bar{f}$. Then $g^{*} \in \mu_{1}\left(f_{n} \mid \mathscr{C}\right)$ and $\left|g^{*}-g\right|<\varepsilon$ on Ω for $n \geqslant N$. If $g \in \mu_{1}\left(\bar{f}_{n} \mid \mathscr{C}\right)$, define $g^{*}=f \vee g \wedge f$. Then $g^{*} \in \mu_{1}(f \mid \mathscr{C})$ and $\left|g^{*}-g\right|<\varepsilon$ on Ω for $n \geqslant N$. Hence $\operatorname{dist}\left(\mu_{1}\left(f_{n} \mid \mathscr{C}\right)\right.$, $\left.\mu_{1}(f \mid \mathscr{C})\right)<\varepsilon$ for $n \geqslant N$.

3. Approximation by Nondecreasing Functions

Let \mathscr{N} be the set of nondecreasing functions on $[0,1]$, and suppose $f \in L_{1}[0,1]$. The set $\mu_{1}(f \mid, \mathcal{N})$ of all best L_{1}-approximations to f by elements of \mathcal{N} is characterized in [1, 2] as follows. Define f and f by $f(x)=\sup \left\{q(x): q \in \mu_{1}(f \mid \mathscr{N})\right\}$ and $f(x)=\inf \left\{q(x): q \in \mu_{1}(f \mid \mathcal{N})\right\}$. It is shown in [3, Theorem 14] that f and f are in $\mu_{1}(f \mid \mathscr{N})$. Let $U=\bigcup U_{i}$, where U_{i} is a maximal open interval on which both f and f are constant and $f \neq f$. Define $h_{f}: U \rightarrow R$ by

$$
h_{f}(x)=\left\{\begin{aligned}
1 & \text { if } f(x) \geqslant \vec{f}(x) \\
-1 & \text { if } f(x) \leqslant \underline{f}(x) \\
0 & \text { if } \quad \underline{f}(x)<f(x)<\bar{f}(x)
\end{aligned}\right.
$$

and, if $x \in U_{i}=\left(u_{i}, v_{i}\right)$, define k_{f} by

$$
k_{f}(x)=\int_{u_{i}}^{x} h_{f}(t) d t .
$$

Then for any $q \in \mathscr{N}$, we have $q \in \mu_{1}(f \mid \mathcal{N})$ if and only if
(i) $\underline{f} \leqslant g \leqslant \bar{f}$ on $[0,1]$, and
(ii) q is constant on components of $\left\{\left[k_{f} \neq 0\right] \cap U_{i}\right\}, i \geqslant 1$.

We use the notation $\mu(A ;[a, b])$ to denote $\mu(A) /(b-a)$, the relative measure of A in [a,b]. The following lemma was proved in [2] and will be used later in this paper.

Lemma 3.1. If $q \in \mu_{1}(f \mid \mathscr{N})$ and q is not constant at $s \in[0,1]$, then

$$
\begin{align*}
& \mu([f \geqslant q] ;[s, t]) \geqslant \frac{1}{2} \text { for } s<t \leqslant 1, \text { and } \tag{1}\\
& \mu([f \leqslant q] ;[t, s]) \geqslant \frac{1}{2} \text { for } 0 \leqslant t<s .
\end{align*}
$$

The main result of this section is an easy consequence of the following lemma.

Lemma 3.2. Suppose $\varepsilon>0$ and $f, g \in L_{1}[0,1]$. If $|f(x)-g(x)|<\varepsilon$ for all $0 \leqslant x \leqslant 1$, then for any $f^{*} \in \mu_{1}(f \mid \mathcal{N})$ there is a $g^{*} \in \mu_{1}(g \mid \mathscr{N})$ so that $\left|f^{*}(x)-g^{*}(x)\right|<8 \varepsilon$ for all $0 \leqslant x \leqslant 1$.

Proof. We have by [3, Theorem 18] that $|\bar{g}(x)-\vec{f}(x)|<\varepsilon$ and $|\underline{g}(x)-\underline{f}(x)|<\varepsilon$ for all $0 \leqslant x \leqslant 1$.

Let U and U_{i}, for $i \geqslant 1$, be defined as above for f, and let V and V_{i}, for $i \geqslant 1$, be defined as above for g. Let $U(\varepsilon)=\bigcup_{i \in I(\varepsilon)} U_{i}$, where $I(\varepsilon)$ is the set of indices such that $f(x)-\underline{f}(x)>6 \varepsilon$ for $x \in U_{i}$. Since f is continuous from
the right and f is continuous from the left, it follows that $\vec{f}(x)-f(x)>6 \varepsilon$ for $x \in \bar{U}_{i}$. For $f^{*} \in \mu_{1}(f \mid \mathcal{N})$ we define g^{*} as follows: if $x \in U(\varepsilon)$, then $g^{*}(x)=g(x) \vee f^{*}(x) \wedge \bar{g}(x)$; if $x<y$ for all $y \in U(\varepsilon)$, then $g^{*}(x)=g(x)$; and otherwise,

$$
g^{*}(x)=\left(\sup _{\substack{y<x \\ y \in U(\varepsilon)}} g^{*}(y)\right) \vee \underline{g}(x) .
$$

It is clear from the definition of g^{*} that $g(x) \leqslant g^{*}(x) \leqslant \bar{g}(x)$ for all $0 \leqslant x \leqslant 1$. Thus $g^{*}(x)$ will be in $\mu_{1}(g \mid \mathcal{N})$ provided

$$
\begin{equation*}
g^{*} \text { is constant on components of }\left\{V_{i} \cap\left[k_{g} \neq 0\right]\right\}, i \geqslant 1 \tag{1}
\end{equation*}
$$

Suppose (1) is not true. Then there is an $x_{0} \in V_{j}$ for some j so that $k_{g}\left(x_{0}\right) \neq 0$ and g^{*} is not constant at x_{0}. Since g^{*} is constant on maximal components of the complement of $\overline{U(\varepsilon)}$, where $\overline{U(\varepsilon)}$ is equal to either $U(\varepsilon)$ or $U(\varepsilon) \cup\{1\}$, we have $x_{0} \in U(\varepsilon)$ and, from the definition of g^{*}, f^{*} is not constant at x_{0}. It follows from Corollary 2 and Theorem 5 of [2] that either f^{*} has a jump discontinuity at x_{0} or $f(x)=f(x)=f(x)$ almost everywhere in an interval containing x_{0}. Since $f(x) \neq f(x)$ for all $x \in U(\varepsilon)$, we have that f^{*}, and hence g^{*}, has a jump discontinuity at x_{0}. Clearly since $\bar{f}\left(x_{0}\right)-f\left(x_{0}\right)>6 \varepsilon$, we have that $\bar{g}\left(x_{0}\right)-g\left(x_{0}\right)>4 \varepsilon$ and hence, $\bar{g}(x)-g(x)>4 \varepsilon$ for all $x \in V_{j}$. It follows that $f(x)-\underline{f}(x)>2 \varepsilon$ for all $x \in V_{j}$, and thus $\mu\left(V_{j}-U\right)=0$. Also, it is shown in [2] that

$$
\begin{equation*}
\mu\left([\underline{f}<f<\bar{f}] \cap V_{j}\right)=0 \quad \text { and } \quad \mu\left([\underline{g}<g<\bar{g}] \cap V_{j}\right)=0 \tag{2}
\end{equation*}
$$

We now show that for almost all $x \in V_{j} \cap U$ we have

$$
\begin{equation*}
h_{g}(x)=h_{f}(x) \tag{3}
\end{equation*}
$$

If $h_{g}(x)=1$, then $f(x)>g(x)-\varepsilon \geqslant \bar{g}(x)-\varepsilon \geqslant f(x)-2 \varepsilon>f(x)$. In view of (2) we have $f(x) \geqslant \bar{f}(x)$ for almost all such x, implying $\bar{h}_{f}(x)=1$. On the other hand, if $h_{f}(x)=1$, then $g(x)>f(x)-\varepsilon \geqslant f(x)-\varepsilon>\bar{g}(x)-2 \varepsilon>g(x)$. In view of (2) we have $g(x) \geqslant \bar{g}(x)$ for almost all such x, implying $h_{g}(x)=1$. The proof that $h_{f}(x)=-1$ if and only if $h_{g}(x)=-1$ for almost all x for which $h_{f}(x)=-1$ or $h_{g}(x)=-1$ is similar, and (3) follows.

Now if $V_{j}=(w, z)$ then $G=\frac{1}{2}(\bar{g}+\underline{g})$ is not constant at w. From Lemma 3.1 we have $\mu\left([g \geqslant G] ;\left[w, x_{0}\right]\right) \geqslant \frac{1}{2}$, and in view of (2), $\mu\left([g \geqslant \bar{g}] ;\left[w, x_{0}\right]\right) \geqslant \frac{1}{2}$, implying

$$
\begin{equation*}
\int_{w}^{x_{0}} h_{g}(t) d t \geqslant 0 . \tag{4}
\end{equation*}
$$

Also since f^{*} is not constant at x_{0}, we have from Lemma 3.1 that $\mu\left(\left[f \leqslant f^{*}\right] ;\left[w, x_{0}\right]\right) \geqslant \frac{1}{2}$. In view of (2), $\mu\left([f \leqslant f] ;\left[w, x_{0}\right]\right) \geqslant \frac{1}{2}$, implying $\int_{\left[w, x_{0}\right] \cap u} h_{f}(t) d t \leqslant 0$. It follows from (3) and the fact that $\left(V_{j}-U\right)=0$ that

$$
\begin{equation*}
\int_{w}^{x_{0}} h_{g}(t) d t \leqslant 0 . \tag{5}
\end{equation*}
$$

From (4) and (5) we see that $\int_{w}^{x_{0}} h_{g}(t) d t=0$, implying that $k_{g}\left(x_{0}\right)=0$, a contradiction. Thus (1) is proved and $g^{*} \in \mu_{1}(g \mid \mathcal{N})$.

We now show that $\left|g^{*}-f^{*}\right|<8 \varepsilon$ for all $x \in[0,1]$. We have that $|\bar{f}(x)-\bar{g}(x)|<\varepsilon$ and $|f(x)-g(x)|<\varepsilon$ for all $x \in[0,1]$. If $x \in U(\varepsilon)$, then $g^{*}(x)$ equals $f^{*}(x), \bar{g}(x)$, or $g(x)$. If $g^{*}(x)=\bar{g}(x)$ then from the definition of g^{*} we have $\bar{g}(x) \leqslant f^{*}(x) \leqslant \bar{f}(x)$. Thus $\left|g^{*}(x)-f^{*}(x)\right|=\left|\bar{g}(x)-f^{*}(x)\right|$ $\leqslant|\bar{g}(x)-\vec{f}(x)|<\varepsilon$. If $g^{*}(x)=g(x)$, then again from the definition of g^{*} we have $\underline{f}(x) \leqslant f^{*}(x) \leqslant \underline{g}(x)$. Thus $\left|g^{*}(x)-f^{*}(x)\right|=\left|g(x)-f^{*}(x)\right| \leqslant$ $|g(x)-\underline{f}(x)|<\varepsilon$. On the other hand, if $x \in U(\varepsilon)$, then $|f(x)-f(x)| \leqslant 6 \varepsilon$. Thus $\left|f^{*}(x)-g^{*}(x)\right| \leqslant \max (f(x), \bar{g}(x))-\min (\underline{f}(x), \underline{g}(x)) \leqslant 8 \varepsilon$, and the lemma is proved.

The following theorem is an easy consequence of Lemma 3.2.

Theorem 3.3. For any $\varepsilon>0$, if $f, g \in L_{1}[0,1]$ satisfy $|f(x)-g(x)|<$ $\varepsilon / 8$ for all $0 \leqslant x \leqslant 1$, then $\operatorname{dist}\left(\mu_{1}(f \mid \mathcal{N}), \mu_{1}(g \mid \mathcal{N})\right)<\varepsilon$ in the uniform metric.

References

1. R. Huotari, D. Legg, A. Meyerowitz, and D. Townsend, The natural best L_{1}-approximation by nondecreasing functions, J. Approx. Theory 52 (1988), 132-140.
2. R. Huotari, A. Meyerowitz, and M. Sheard, Best monotone approximants in $L_{1}[0,1]$, J. Approx. Theory 47 (1986), 85-91.
3. D. Landers and L. Rogge, Best approximants in L_{ψ}-spaces, Z. Wahrsch. Verw. Gebiete 51 (1980), 215-237.
4. T. Shintani and T. Ando, Best approximants in L_{1}-space, Z. Wahrsch. Verw. Gebiete 33 (1975), 33-39.
