1,406 research outputs found

    The Weird Stuff

    Get PDF

    Observations on the Administration of Law in Nisi Prius Courts in the Western States

    Get PDF

    Superallowed 0+ to 0+ nuclear beta decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model

    Get PDF
    A new critical survey is presented of all half-life, decay-energy and branching-ratio measurements related to 20 0+ to 0+ beta decays. Compared with our last review, there are numerous improvements: First, we have added 27 recently published measurements and eliminated 9 references; of particular importance, the new data include a number of high-precision Penning-trap measurements of decay energies. Second, we have used the recently improved isospin symmetry-breaking corrections. Third, our calculation of the statistical rate function now accounts for possible excitation in the daughter atom. Finally, we have re-examined the systematic uncertainty associated with the isospin symmetry-breaking corrections by evaluating the radial-overlap correction using Hartree-Fock radial wave functions and comparing the results with our earlier calculations, which used Saxon-Woods wave functions; the provision for systematic uncertainty has been changed as a consequence. The new corrected Ft values are impressively constant and their average, when combined with the muon liftime, yields the up-down quark-mixing element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, V_{ud} = 0.97425(22). The unitarity test on the top row of the matrix becomes |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99995(61). Both V_{ud} and the unitarity sum have significantly reduced uncertainties compared with our previous survey, although the new value of V_{ud} is statistically consistent with the old one. From these data we also set limits on the possible existence of scalar interactions, right-hand currents and extra Z bosons. Finally, we discuss the priorities for future theoretical and experimental work with the goal of making the CKM unitarity test even more definitive.Comment: 36 pages, 11 tables, 9 figure

    The Evaluation of V_{ud}, Experiment and Theory

    Full text link
    The value of the V_{ud} matrix element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix can be derived from nuclear superallowed beta decays, neutron decay, and pion beta decay. We survey current world data for all three. Today, the most precise value of V_{ud} comes from the nuclear decays; however, the precision is limited not by experimental error but by the estimated uncertainty in theoretical corrections. Experimental uncertainty does limit the neutron-decay result, which, though statistically consistent with the nuclear result, is approximately a factor of three poorer in precision. The value obtained for VudV_{ud} leads to a result that differs at the 98% confidence level from the unitarity condition for the CKM matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.Comment: 21 pages, 1 figure, LaTe
    • …
    corecore