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Superallowed 0+ → 0+ nuclear β decays: A new survey with precision tests of the
conserved vector current hypothesis and the standard model
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A new critical survey is presented of all half-life, decay-energy, and branching-ratio measurements related to
20 superallowed 0+ → 0+β decays. Compared with our last review, there are numerous improvements: First,
we have added 27 recently published measurements and eliminated 9 references, either because they have been
superseded by much more precise modern results or because there are now reasons to consider them fatally
flawed; of particular importance, the new data include a number of high-precision Penning-trap measurements
of decay energies. Second, we have used the recently improved isospin symmetry-breaking corrections, which
were motivated by these new Penning-trap results. Third, our calculation of the statistical rate function f

now accounts for possible excitation in the daughter atom, a small effect but one that merits inclusion at the
present level of experimental precision. Finally, we have re-examined the systematic uncertainty associated with
the isospin symmetry-breaking corrections by evaluating the radial-overlap correction using Hartree-Fock radial
wave functions and comparing the results with our earlier calculations, which used Saxon-Woods wave functions;
the provision for systematic uncertainty has been changed as a consequence. The new “corrected” F t values are
impressively constant and their average, when combined with the muon lifetime, yields the up-down quark-mixing
element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Vud = 0.97425 ± 0.00022. The unitarity test on the
top row of the matrix becomes |Vud |2 + |Vus |2 + |Vub|2 = 0.99995 ± 0.00061. Both Vud and the unitarity sum
have significantly reduced uncertainties compared with our previous survey, although the new value of Vud is
statistically consistent with the old one. From these data we also set limits on the possible existence of scalar
interactions, right-hand currents, and extra Z bosons. Finally, we discuss the priorities for future theoretical and
experimental work with the goal of making the CKM unitarity test even more definitive.
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I. INTRODUCTION

Precise measurements of the β decay between nuclear
analog states of spin Jπ = 0+ and isospin T = 1 provide
demanding and fundamental tests of the properties of the
electroweak interaction. Collectively, these transitions can
sensitively probe the conservation of the vector weak current,
set tight limits on the presence of scalar or right-hand currents,
and, by providing the most precise value for Vud , the up-down
quark-mixing element of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, can contribute to the most demanding available
test of the unitarity of that matrix, a property fundamental to
the electroweak standard model.

We have published five previous surveys of 0+ → 0+
superallowed transitions [1–5], the first having appeared
35 years ago and the most recent four years ago. In each,
we published a complete survey of all relevant nuclear data
that pertained to these superallowed transitions and used the
results to set limits on the weak-interaction parameters that
were important at the time. A particularly notable outcome of
our analysis four years ago [5] was that the sum of squares
of the top-row elements of the CKM matrix—the test of
CKM unitarity—remained ambiguous, with the possibility of
a significant shortfall in the unitarity sum.

*hardy@comp.tamu.edu

Since our last survey closed in November 2004, there
has been a great deal of activity in this field prompted at
least in part by the tantalizing possibility that new physics
could be revealed by a failure in CKM unitarity. New
measurements relating to 0+ → 0+ superallowed transitions
have appeared in 27 publications, an addition of 20% to the
papers accumulated up to 2004. Many of these measurements
were of unprecedented precision so they did not merely add
more of the same: They palpably improved the results, in
some cases by tightening their error bars and, in others, by
changing their central values. Penning-trap measurements of
decay energies, which only became possible after 2004, have
been especially effective in this regard.

In addition to new measurements, there have also been
important improvements to the small theoretical corrections
that must be applied to the data to extract Vud and the values of
other weak-interaction parameters. In the past four years, the
radiative [6] and isospin symmetry-breaking corrections [7]
have both been subjected to major re-evaluations, which have
undoubtedly improved their values and, in the former case, has
reduced the uncertainty by a factor of 2.

In parallel with these developments, there has also been
considerable activity in the determination of Vus , the other
matrix element that plays a role in the top-row unitarity test of
the CKM matrix. (The third element in the top row, Vub, is very
small and contributes a negligible 0.001% to the unitarity sum.)
As with the work related to Vud , this activity has encompassed
new experiments—precise measurements of kaon branching
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ratios—as well as improved theoretical corrections. However,
in contrast with Vud , not only the uncertainty of Vus but also its
central value have been considerably changed by this recent
work (see Ref. [8] for an up-to-date overview of Vus).

Overall, the recent improvements have been numerous
enough and their impact on the unitarity test significant
enough that this is an opportune time to produce a new and
updated survey of the nuclear data used to establish Vud . We
incorporate data on a total of 20 superallowed transitions
and have continued the practice we began in 1984 [3] of
updating all original data to take account of the most modern
calibration standards. In addition to including the improved
correction terms already referred to, we have also upgraded
our calculation of the statistical rate function f to include
provision for excitation of the daughter atom, and we have
included a more extensive treatment of possible systematic
uncertainties associated with the isospin symmetry-breaking
corrections.

Superallowed 0+ → 0+ β decay between T = 1 analog
states depends uniquely on the vector part of the weak
interaction and, according to the conserved vector current
(CVC) hypothesis, its experimental f t value should be related
to the vector coupling constant, a fundamental constant that
is the same for all such transitions. In practice, the expression
for f t includes several small (∼1%) correction terms. It is
convenient to combine some of these terms with the f t value
and define a “corrected” F t value. Thus, we write [5]

F t ≡ f t(1 + δ′
R)(1 + δNS − δC) = K

2G2
V

(
1 + �V

R

) , (1)

where K/(h̄c)6 = 2π3h̄ ln 2/(mec
2)5 = 8120.2787(11) ×

10−10 GeV−4 s, GV is the vector coupling constant
for semileptonic weak interactions, δC is the isospin-
symmetry-breaking correction, and �V

R is the transition-
independent part of the radiative correction. The terms
δ′
R and δNS comprise the transition-dependent part of the

radiative correction, the former being a function only of the
electron’s energy and the Z of the daughter nucleus, while
the latter, like δC , depends in its evaluation on the details
of nuclear structure. From this equation, it can be seen that
each measured transition establishes an individual value
for GV and, if the CVC assertion is correct that GV is not
renormalized in the nuclear medium, all such values—and
all the F t values themselves—should be identical within
uncertainties, regardless of the specific nuclei involved.

Our procedure in this paper is to examine all experimental
data related to 20 superallowed transitions, comprising all
those that have been well studied, together with others that
are now coming under scrutiny after becoming accessible to
precision measurement. The methods used in data evaluation
are presented in Sec. II. The calculations and corrections
required to extract F t values from these data are described and
applied in Sec. III; in the same section, we use the resulting F t

values to test CVC. Finally, in Sec. IV we explore the impact
of these results on a number of weak-interaction issues: CKM
unitarity as well as the possible existence of scalar interactions,
right-hand currents, and extra Z bosons. This is much the same
pattern as we followed in our last review [5] so we will not

describe the formalism again in detail, referring the reader
instead to that earlier work.

II. EXPERIMENTAL DATA

The f t value that characterizes any β transition depends
on three measured quantities: the total transition energy, QEC,
the half-life, t1/2, of the parent state, and the branching ratio,
R, for the particular transition of interest. The QEC value is
required to determine the statistical rate function, f , and the
half-life and branching ratio combine to yield the partial half-
life, t . In Tables I–VII we present the measured values of these
three quantities and supporting information for a total of 20
superallowed transitions.

A. Evaluation principles

In our treatment of the data, we considered all mea-
surements formally published before September 2008 and
those we knew to be in an advanced state of preparation
for publication by that date. We scrutinized all the original
experimental reports in detail. Where necessary and possible,
we used the information provided there to correct the results for
calibration data that have improved since the measurement was
made. If corrections were evidently required but insufficient
information was provided to make them, the results were
rejected. Of the surviving results, only those with (updated)
uncertainties that are within a factor of 10 of the most precise
measurement for each quantity were retained for averaging in
the tables. Each datum appearing in the tables is attributed
to its original journal reference via an alphanumeric code
comprising the initial two letters of the first author’s name
and the two last digits of the publication date. These codes
are correlated with the actual reference numbers, [9–173], in
Table VIII.

The statistical procedures we have followed in analyzing
the tabulated data are based on those used by the Particle Data
Group in their periodic reviews of particle properties (e.g.,
Ref. [174]) and adopted by us in our previous surveys. We
gave a detailed description of those procedures in our 2004
survey [5] so will not repeat it here.

Our evaluation principles and associated statistical pro-
cedures constitute a very conservative approach to the data.
Unless there is a clearly identifiable reason to reject a result,
we include it in our data base even if it deviates significantly
from other measurements of the same quantity, the consequent
nonstatistical spread in results being reflected in an increased
uncertainty assigned to the average. Wherever this occurs,
the factor by which the uncertainty has been increased is
listed in the “scale” column of a table. There are a few
examples, though, of a single publication that includes a
number of measurements—a set of half-lives or QEC values for
example—most or all of which deviate substantially from other
accepted measurements of the same quantities. In such cases,
we consider that some systematic problem has been revealed,
and we exclude all the results from that publication. If any
measurement with an acceptable uncertainty is nevertheless
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TABLE I. Measured results from which the decay transition energies, QEC, have been derived for superallowed β decays. The lines giving
the average superallowed QEC values themselves are in bold print. (See Table VIII for the correlation between the alphanumeric reference code
used in this table and the actual reference numbers.)

Parent/daughter Propertya Measured energies used to determine QEC (keV) Average value
nuclei

1 2 3 Energy (keV) Scale

Tz = −1
10C 10B QEC(gs) 3647.84 ± 0.34 [Ba84] 3647.95 ± 0.12 [Ba98] 3647.94 ± 0.11 1.0

Ex (d0+) 1740.15 ± 0.17 [Aj88] 1740.07 ± 0.02b 1740.07 ± 0.02 1.0
QEC(sa) 1907.87 ± 0.11

14O 14N QEC(gs) 5143.35 ± 0.60 [Bu61] 5145.09 ± 0.46 [Ba62] 5145.57 ± 0.48 [Ro70]
5143.43 ± 0.37 [Wh77] 5144.34 ± 0.17 [To03] 5144.33 ± 0.29 2.1

Ex (d0+) 2312.798 ± 0.011 [Aj91] 2312.798 ± 0.011
QEC(sa) 2831.24 ± 0.23c 2.3

18Ne 18F ME(p) 5316.8 ± 1.5 [Ma94] 5317.63 ± 0.36 [Bl04b] 5317.58 ± 0.35 1.0
ME(d) 873.31 ± 0.94 [Bo64] 875.5 ± 2.2 [Ho64] 876.5 ± 2.8 [Pr67]

877.2 ± 3.0 [Se73] 873.96 ± 0.61 [Ro75] 874.02 ± 0.48 1.0
QEC(gs) 4438 ± 9 [Fr63] 4443.54 ± 0.60 1.0
Ex (d0+) 1041.55 ± 0.08 [Ti95] 1041.55 ± 0.08
QEC(sa) 3401.99 ± 0.60

22Mg 22Na ME(p) −401.2 ± 3.0 [Ha74c] −400.4 ± 1.3d −400.5 ± 1.0 [Pa05] −400.5 ± 0.8 1.0
ME(d) −5184.3 ± 1.5 [We68] −5182.5 ± 0.5 [Be68] −5181.3 ± 1.7 [An70]

−5183.2 ± 1.0 [Gi72] −5181.56 ± 0.16 [Mu04] −5181.08 ± 0.30 [Sa04] −5181.58 ± 0.19 1.7
QEC(gs) 4781.64 ± 0.28 [Mu04] 4781.40 ± 0.67 [Sa04] 4781.55 ± 0.25 1.0
Ex (d0+) 657.00 ± 0.14 [En98] 657.00 ± 0.14
QEC(sa) 4124.55 ± 0.28

26Si 26Al ME(p) −7145.4 ± 3.0 [Ha74c] −7139.5 ± 1.0 [Pa05] −7140.1 ± 1.8 1.9
ME(d0+) −11981.99 ± 0.26e −11981.99 ± 0.26
QEC(sa) 4850 ± 13 [Fr63] 4842.0 ± 1.8 1.0

30S 30P ME(p) −14060 ± 15 [Mi67] −14054 ± 25 [Mc67] −14068 ± 30 [Ha68]
−14063.4 ± 3.0 [Ha74c] −14063.1 ± 2.9 1.0

ME(d) −20203 ± 3 [Ha67] −20200.58 ± 0.40 [Re85] −20200.62 ± 0.40 1.0
QEC(gs) 6137.5 ± 2.9
Ex (d0+) 677.29 ± 0.07 [En98] 677.29 ± 0.07
QEC(sa) 5437 ± 17 [Fr63] 5459.5 ± 3.9 1.3

34Ar 34Cl ME(p) −18380.2 ± 3.0 [Ha74c] −18378.4 ± 3.5 [He01] −18377.10 ± 0.41 [He02] −18377.17 ± 0.40 1.0
ME(d) −24440.15 ± 0.26e −24440.15 ± 0.26
QEC(sa) 6062.98 ± 0.48

38Ca 38K ME(p) −22058.53 ± 0.28 [Ri07] −22058.01 ± 0.65 [Ge07] −22058.45 ± 0.26 1.0
ME(d0+) −28670.20 ± 0.32e −28670.20 ± 0.32
QEC(sa) 6611.75 ± 0.41

42Ti 42Sc ME(p) −25121 ± 6 [Mi67] −25086 ± 30 [Ha68] −25124 ± 13 [Zi72] −25120.7 ± 5.3 1.0
ME(d) −32121.12 ± 0.29e −32121.12 ± 0.29
QEC(sa) 7000.5 ± 5.4

Tz = 0
26Alm 26Mg QEC(gs) 4004.79 ± 0.55 [De69] 4004.41 ± 0.10f 4004.40 ± 0.22 [Ge08] 4004.42 ± 0.09 1.0

Ex (p0+) 228.305 ± 0.013 [En98] 228.305 ± 0.013
QEC(sa) 4232.19 ± 0.12 [Br94] 4232.83 ± 0.13 [Er06b] 4232.66 ± 0.12c 2.1

34Cl 34S QEC(sa) 5490.3 ± 1.9 [Ry73a] 5491.6 ± 2.3 [Ha74d] 5491.71 ± 0.54 [Ba77c]
5491.65 ± 0.26g 5491.64 ± 0.23 1.0

38Km 38Ar QEC(gs) 5914.82 ± 0.61 [Ja78] 5914.82 ± 0.61
Ex (p0+) 130.4 ± 0.3 [En98] 130.4 ± 0.3
QEC(sa) 6044.6 ± 1.5 [Bu79] 6044.38 ± 0.12 [Ha98] 6044.40 ± 0.11 1.0

42Sc 42Ca QEC(sa) 6425.84 ± 0.17h 6426.13 ± 0.21 [Er06b] 6426.28 ± 0.30c 3.0

46V 46Ti QEC(sa) 7053.3 ± 1.8 [Sq76] 7052.90 ± 0.40 [Sa05] 7052.72 ± 0.31 [Er06b]
7052.11 ± 0.27 [Fa09] 7052.49 ± 0.16 1.3

50Mn 50Cr QEC(sa) 7634.48 ± 0.07 [Er08] 7634.45 ± 0.07c 1.0

54Co 54Fe QEC(sa) 8244.54 ± 0.10 [Er08] 8244.37 ± 0.28c 3.4

62Ga 62Zn QEC(sa) 9181.07 ± 0.54 [Er06a] 9181.07 ± 0.54
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TABLE I. (Continued.)

Parent/daughter Propertya Measured energies used to determine QEC (keV) Average value
nuclei

1 2 3 Energy (keV) Scale

66As 66Ge ME(p) −52018 ± 30 [Sc07] 52018 ± 30
ME(d) −61607.0 ± 2.4 [Sc07] −61607.0 ± 2.4
QEC(sa) 9550 ± 50 [Da80] 9579 ± 26 1.0

70Br 70Se QEC(sa) 9970 ± 170 [Da80] 9970 ± 170

74Rb 74Kr ME(p) −51905 ± 18 [He02] −51915.2 ± 4.0 [Ke07] −51914.7 ± 3.9 1.0
ME(d) −62332.0 ± 2.1 [Ro06] −62332.0 ± 2.1
QEC(sa) 10417.3 ± 4.4

aAbbreviations: gs, transition between ground states; sa, superallowed transition; p, parent; d, daughter; ME, mass excess; Ex(0+), excitation
energy of the 0+ (analog) state. Thus, for example, QEC(sa) signifies the QEC value for the superallowed transition, ME(d), the mass excess of
the daughter nucleus; and ME(d0+), the mass excess of the daughter’s 0+ state.
bResult based on Refs. [Ba88] and [Ba89].
cAverage result includes the results of QEC pairs; see Table II.
dResult based on Refs. [Bi03], [Se05], and [Je07].
eResult obtained from data elsewhere in this table.
fResult based on Refs. [Is80], [Al82], [Hu82], [Be85], [Pr90], [Ki91], and [Wa92].
gResult based on Refs. [Wa83], [Ra83], and [Li94].
hResult based on Refs. [Zi87] and [Ki89].

excluded from our data base, the reason for its exclusion is
listed in Table VII.

One particularly significant, longstanding reference had to
be excluded for the first time from this survey. Our decision to
do so deserves a more detailed explanation. In 1977, Vonach
et al. published in a single paper [162] the QEC values for
seven superallowed emitters (14O, 26Alm,34Cl, 42Sc, 46V, 50Mn,
and 54Co), which they had determined from the Q values for
(3He,t) reactions on their stable daughters. They had used
a “precision time-of-flight measuring system” with the Q3D
spectrograph of the Munich Tandem Laboratory to produce
uncertainties of 0.4–0.6 keV. For the time, these were very
precise results and consequently they had a major impact on
the superallowed data base for the following three decades.

The first indication that the Vonach et al. results might
have a problem came with the first Penning-trap measurement
of a superallowed QEC value [149]. The new measurement
for 46V quoted 0.4-keV uncertainty and differed from the
old result by 2.4 keV, four of Vonach’s claimed standard

TABLE II. QEC value differences for superallowed β-decay
branches. These data are also used as input to determine some of
the average QEC values listed in Table I. (See Table VIII for the
correlation between the alphanumeric reference code used in this
table and the actual reference numbers.)

Parent Parent QEC2 − QEC1 (keV)
nucleus 1 nucleus 2

Measurement Averagea

14O 26Alm 1401.68 ± 0.13 [Ko87] 1401.43 ± 0.26
26Alm 42Sc 2193.5 ± 0.2 [Ko87] 2193.62 ± 0.32
42Sc 50Mn 1207.6 ± 2.3 [Ha74d] 1208.17 ± 0.30
42Sc 54Co 1817.2 ± 0.2 [Ko87] 1818.09 ± 0.41
50Mn 54Co 610.09 ± 0.17 [Ko87]

[Ko97b] 609.92 ± 0.29

aAverage values include the results of direct QEC value measure-
ments; see Table I.

deviations. Within a year, a second Penning-trap measurement
[61] had confirmed the new 46V result and had also found that
the 42Sc QEC value differed from the Vonach result by six
times the latter’s quoted uncertainty. Two years later, another
Penning-trap measurement [62] indicated that the 50Mn and
54Co QEC values also differed from Vonach’s results by a
similar amount. These most-recent Penning-trap results quoted
0.1-keV uncertainties. A current overview of the situation for
all seven of the superallowed transitions measured by Vonach
appears in Fig. 1, where each Vonach result is compared with
the equivalent result(s) from a Penning trap, and both are
compared to the average of all results for the same transition.
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FIG. 1. Differences between individual measurements and the
averages of all measurements for the seven parent nuclei studied by
Vonach et al. [162]. The filled squares are the results of the (3He, t)
measurements of Vonach et al.; the open squares are recent Penning-
trap results [61,62,73,149]. For each parent nucleus, the gray band
about the zero line represents the uncertainty of the average for that
case. Note that all the averages include the results of Vonach et al., the
Penning-trap results, and any other relevant measurements appearing
in Table I.
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With only two transitions, those from 26Alm and 34Cl, showing
agreement and the four cases already mentioned displaying
serious disagreement, we believed that the best approach
was to eliminate all the results published in the original
Vonach et al. reference [162]. This conclusion has been further
supported by a very recent (3He,t) measurement of the 46V
QEC value [63] made with much of the same experimental
equipment originally used by Vonach et al. 30 years ago. The
new result disagrees with the old measurement and confirms
the new Penning-trap values.

Before Penning traps could be applied to these measure-
ments, all superallowed QEC values were determined via
nuclear reactions. In addition to those employing (3He,t)
reactions, two other types of experiment led to rather precise
results: the measurement of (p,n) thresholds and the combined
measurements of (p, γ ) and (n, γ ) Q values on the same target,
one reaction leading to the superallowed parent and the other
to the daughter. We are now in a position to compare the
different types of measurement to examine whether there are
any systematic differences among them. A careful study of
this issue [175], restricted to the region around A = 26, was
undertaken several years ago and revealed no evidence of any
systematic differences. We can now confirm this conclusion
over a wider mass range with the help of Fig. 2. In that
figure we consider nine superallowed transitions, which we
will refer to as the “traditional nine” cases. They are the
only superallowed transitions that populate a stable daughter
nucleus and, for obvious reasons, were the only ones whose
Q values could be measured to high precision in the pre-trap
era. There are no systematic deviations apparent in the figure,
leading us to conclude that, whatever problems plagued the
measurements of Vonach et al. [162], they were associated
with that particular experiment and were not endemic to a
whole class of experiments. Of course, this conclusion could
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FIG. 2. Differences between individual measurements and aver-
age values for the “traditional nine” transitions; the results of Vonach
et al. [162] have been removed from the averages. The open squares
are the results of Penning-trap measurements [61,62,73,149]; the
filled squares are from combined (p, γ ) and (n, γ ) measurements
(see Ref. [55] and the references listed in Footnotes f, g, and h of
Table I); the filled triangles are from (p,n) threshold measurements
[26,27,31,45,87,106,160,166]; and the filled diamond is the new
(3He,t) measurement for 46V [63]. For each parent nucleus, the gray
band about the zero line represents the uncertainty of the average for
that case.

be strengthened by new Penning-trap data for 10C, 14O, 34Cl,
and 38Km.

B. Data tables

The QEC value data appear in Tables I and II. For the
“traditional nine” superallowed decays—those of 10C, 14O,
26Alm,34Cl, 38Km,42Sc, 46V, 50Mn, and 54Co—with stable
daughter nuclei, their QEC values were all determined in the
past by direct reaction measurements of that property. More re-
cently, a growing number of Penning-trap measurements, also
extending to nuclei outside of the traditional nine, determine
the parent and daughter masses in a single experiment, thus
effectively measuring the QEC value directly. Measurements
of both types are identified in column 3 of Table I by “QEC(sa)”
and each individual result is itemized with its appropriate
reference in the next three columns. The weighted average of
all measurements for a particular decay appears in column 7,
with the corresponding scale factor (see Sec. II A) in column 8.
A few of these cases, such as 34Cl and all the cases from
42Sc to 62Ga, have no further complications. There are other
cases, however, in which QEC value differences have been
measured in addition to the individual QEC values. These
measurements are presented in Table II. They have been dealt
with in combination with the direct QEC value measurements,
as described in Ref. [5], with the final average QEC value
appearing in column 7 of Table I and the average difference
in column 4 of Table II. Both are flagged with footnotes to
indicate the interconnection.

There are two cases, 26Alm and 38Km, in which the
superallowed decay originates from an isomeric state. For
both, there are QEC value measurements that correspond to
the ground state as well as to the isomer. Obviously, these
two sets of measurements are simply related to one another
by the excitation energy of the isomeric state in the parent.
In Table I the set of measurements for the ground-state QEC

value and for the excitation energy of the isomeric state appear
in separate rows, each with its identifying property given in
column 3 and its weighted average appearing in column 7.
In the row below, the average value given in column 7 for the
superallowed transition is the weighted average not only of the
direct superallowed QEC value measurements in that row but
also of the result derived from the two preceding rows. Note
that in all cases the QEC value for the superallowed transition
appears in bold-face type.

For some decays that lead to radioactive daughter nuclei,
there is no direct measurement of the QEC value for the
superallowed transition or the one that exists is rather im-
precise. In these cases the QEC value must depend on the
measured mass excesses of the parent and daughter nuclei,
together with the excitation energy of the analog 0+ state
in the daughter. Each of these properties is identified in
column 3 of Table I, with the individual measurements of that
property, their weighted average, and a scale factor appearing
in columns to the right. The average QEC value listed for the
corresponding superallowed transition is obtained from these
separate averages. If a direct measurement of the superallowed
QEC value exists, then it is also included in the final average.

As in our previous survey [5], we have not used the 2003
mass tables [19] to derive the QEC values of interest. Our
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TABLE III. Half-lives, t1/2, of superallowed β emitters. (See Table VIII for the correlation between the alphanumeric reference code used
in this table and the actual reference numbers.)

Parent Measured half-lives, t1/2 (ms) Average value
nucleus

1 2 3 4 t1/2 (ms) Scale

Tz = −1
10C 19280 ± 20 [Az74] 19295 ± 15 [Ba90] 19310 ± 4 [Ia08] 19308.0 ± 3.8 1.0
14O 70480 ± 150 [Al72] 70588 ± 28 [Cl73] 70430 ± 180 [Az74] 70684 ± 77 [Be78]

70613 ± 25 [Wi78] 70560 ± 49 [Ga01] 70641 ± 20 [Ba04] 70696 ± 52 [Bu06] 70620 ± 15 1.2
18Ne 1669 ± 4 [Al75] 1687 ± 9 [Ha75] 1665.6 ± 1.9 [Gr07] 1667.0 ± 1.7 1.0
22Mg 3857 ± 9 [Ha75] 3875.5 ± 1.2 [Ha03] 3875.2 ± 2.4 2.0
26Si 2210 ± 21 [Ha75] 2240 ± 10 [Wi80] 2228.3 ± 2.7 [Ma08] 2228.8 ± 2.9 1.1
30S 1180 ± 40 [Ba67] 1220 ± 30 [Mo71] 1178.3 ± 4.8 [Wi80] 1179.4 ± 4.7 1.0
34Ar 844.5 ± 3.4 [Ha74a] 843.8 ± 0.4 [Ia06] 843.8 ± 0.4 1.0
38Ca 470 ± 20 [Ka68] 439 ± 12 [Ga69] 450 ± 70 [Zi72] 430 ± 12 [Wi80] 440.0 ± 7.8 1.2
42Ti 200 ± 20 [Ni69] 202 ± 5 [Ga69] 173 ± 14 [Al69] 198.8 ± 6.3 1.4

Tz = 0
26Alm 6346 ± 5 [Fr69a] 6346 ± 5 [Az75] 6339.5 ± 4.5 [Al77] 6346.2 ± 2.6 [Ko83] 6345.0 ± 1.9 1.0

6345 ± 14 [Sc05]
34Cl 1526 ± 2 [Ry73a] 1525.2 ± 1.1 [Wi76] 1527.7 ± 2.2 [Ko83] 1526.8 ± 0.5 [Ia06] 1526.55 ± 0.44 1.0
38Km 925.6 ± 0.7 [Sq75] 922.3 ± 1.1 [Wi76] 921.71 ± 0.65 [Wi78] 924.15 ± 0.31 [Ko83]

924.4 ± 0.6 [Ba00] 924.46 ± 0.14 [Ba08] 924.33 ± 0.27 2.3
42Sc 680.98 ± 0.62 [Wi76] 680.67 ± 0.28 [Ko97a] 680.72 ± 0.26 1.0
46V 422.47 ± 0.39 [Al77] 422.28 ± 0.23 [Ba77a] 422.57 ± 0.13 [Ko97a] 422.50 ± 0.11 1.0
50Mn 284.0 ± 0.4 [Ha74b] 282.8 ± 0.3 [Fr75] 282.72 ± 0.26 [Wi76] 283.29 ± 0.08 [Ko97a]

283.10 ± 0.14 [Ba06] 283.21 ± 0.11 1.7
54Co 193.4 ± 0.4 [Ha74b] 193.0 ± 0.3 [Ho74] 193.28 ± 0.18 [Al77] 193.28 ± 0.07 [Ko97a] 193.271 ± 0.063 1.0
62Ga 115.84 ± 0.25 [Hy03] 116.19 ± 0.04 [Bl04a] 116.09 ± 0.17 [Ca05] 116.01 ± 0.19 [Hy05]

116.100 ± 0.025 [Gr08] 116.121 ± 0.040 1.9
66As 95.78 ± 0.39 [Al78] 95.77 ± 0.28 [Bu88] 97 ± 2 [Ji02] 95.79 ± 0.23 1.0
70Br 80.2 ± 0.8 [Al78] 78.54 ± 0.59 [Bu88] 79.12 ± 0.79 1.7
74Rb 64.90 ± 0.09 [Oi01] 64.761 ± 0.031 [Ba01] 64.776 ± 0.043 1.5

approach is to include all pertinent measurements for each
property; typically, only a subset of the available data is
included as input to the mass tables. Furthermore, we have
examined each reference in detail and either accepted the
result, updated it to modern calibration standards, or rejected
it for cause. The updating procedures are outlined, reference
by reference, in Table VI and the rejected results are similarly
documented in Table VII. With a comparatively small data set,
we could afford to pay the kind of individual attention that is
impossible when one is considering all nuclear masses.

The half-life data appear in Table III in similar format to
Table I. For obvious reasons, half-life measurements do not
lend themselves to being updated. Consequently, a number of
mostly pre-1970 measurements have been rejected because
they were not analyzed with the “maximum-likelihood”
method. The importance of using this technique for precision
measurements was not recognized until that time [67] and,
without access to the primary data, there is no way a new
analysis can be applied retroactively. All rejected half-life
measurements are also documented in Table VII.

Finally, the branching-ratio measurements are presented
in Table IV. The decays of the Tz = 0 parents are the most
straightforward since, in all these cases, the superallowed
branch accounts for >99.5% of the total decay strength. Thus,
even imprecise measurements of the weak nonsuperallowed

branches can be subtracted from 100% to yield the super-
allowed branching ratio with good precision. For the higher
Z parents of this type, particularly 62Ga and heavier, it has
been shown theoretically [88] and experimentally [64,133]
that numerous very-weak Gamow-Teller transitions occur,
which, in total, can carry significant decay strength. Where
such unobserved transitions are expected to exist and have
not already been accounted for in the quoted references, we
have used a combination of experiment and theory to account
for the unobserved strength, with uncertainties being adjusted
accordingly.

The branching ratios for decays from Tz = −1 parents are
much more challenging to determine, since the superallowed
branch is usually one of several strong branches—with the
notable exception of 14O—and, in two of the measured cases,
it actually has a branching ratio of less than 10%. The
decays of 18Ne, 26Si, 30S, 34Ar, and 42Ti thus required special
treatment. In each case, the absolute branching ratio for a
single β transition has been measured. The branching ratios
for other β transitions then had to be determined from the
relative intensities of β-delayed γ rays in the daughter. The
relevant γ -ray intensity measurements appear in Table V, with
their averages then being used to determine the superallowed
branching-ratio averages shown in bold type in Table IV. These
cases are also flagged with a table footnote.
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TABLE IV. Measured results from which the branching ratios, R, have been derived for superallowed β transitions. The lines giving
the average superallowed branching ratios themselves are in bold print. (See Table VIII for the correlation between the alphanumeric
reference code used in this table and the actual reference numbers.)

Parent/daughter Daughter state Measured branching ratio, R (%) Average value
nuclei Ex (MeV)

1 2 R (%) Scale

Tz = −1
10C 10B 2.16 0+0.0008

−0 [Go72] 0+0.0008
−0

1.74 1.468 ± 0.014 [Ro72] 1.473 ± 0.007 [Na91]
1.465 ± 0.009 [Kr91] 1.4625 ± 0.0025 [Sa95]

1.4665 ± 0.0038 [Fu99] 1.4646 ± 0.0019 1.0
14O 14N gs 0.68 ± 0.10 [Sh55, To05] 0.74 ± 0.05 [Fr63, To05]]

0.54 ± 0.02 [Si66, To05] 0.571 ± 0.068 3.7
3.95 0.062 ± 0.007 [Ka69] 0.058 ± 0.004 [Wi80]

0.053 ± 0.002 [He81] 0.0545 ± 0.0019 1.1
2.31 99.374 ± 0.068

18Ne 18F 1.04 9 ± 3 [Fr63] 7.70 ± 0.21a [Ha75] 7.70 ± 0.21 1.0
22Mg 22Na 0.66 54.0 ± 1.1 [Ha75] 53.15 ± 0.12 [Ha03] 53.16 ± 0.12 1.0
26Si 26Al 1.06 21.8 ± 0.8 [Ha75] 21.21 ± 0.64 [Ma08] 21.4 ± 0.5 1.0

0.23 75.49 ± 0.57a

30S 30P gs 20 ± 1 [Fr63] 20 ± 1
0.68 77.4 ± 1.0a

34Ar 34Cl 0.67 2.49 ± 0.10 [Ha74a] 2.49 ± 0.10
gs 94.45 ± 0.25a

42Ti 42Sc 0.61 56 ± 14 [Al69] 56 ± 14
gs 43 ± 14a

Tz = 0
26Alm 26Mg gs >99.997 [Ki91] 100.000+0

−0.003
34Cl 34S gs >99.988 [Dr75] 100.000+0

−0.012
38Km 38Ar 3.38 <0.0019 [Ha94] <0.0008 [Le08] 0+0.0008

−0

gs(38K) 0.0330 ± 0.0043 [Le08] 0.0330 ± 0.0043
gs 99.9670+0.0043

−0.0044
42Sc 42Ca 1.84 0.0063 ± 0.0026 [In77] 0.0022 ± 0.0017 [De78]

0.0103 ± 0.0031 [Sa80] 0.0070 ± 0.0012 [Da85] 0.0059 ± 0.0014 1.6
gs 99.9941 ± 0.0014

46V 46Ti 2.61 0.0039 ± 0.0004 [Ha94] 0.0039 ± 0.0004
4.32 0.0113 ± 0.0012 [Ha94] 0.0113 ± 0.0012

�GTb <0.004 0+0.004
−0

gs 99.9848+0.0013
−0.0042

50Mn 50Cr 3.63 0.057 ± 0.003 [Ha94] 0.057 ± 0.003
3.85 <0.0003 [Ha94] 0+0.0003

−0

5.00 0.0007 ± 0.0001 [Ha94] 0.0007 ± 0.0001
gs 99.9423 ± 0.0030

54Co 54Fe 2.56 0.0045 ± 0.0006 [Ha94] 0.0045 ± 0.0006
�GTb <0.03 0+0.03

−0

gs 99.9955+0.0006
−0.0300

62Ga 62Zn �GTb 0.142 ± 0.008 [Fi08] 0.107 ± 0.024 [Be08] 0.139 ± 0.011 1.4
gs 99.862 ± 0.011

74Rb 74Kr �GTb 0.50 ± 0.10 [Pi03] 0.50 ± 0.10
gs 99.50 ± 0.10

aResult also incorporates data from Table V.
bDesignates total Gamow-Teller transitions to levels not explicitly listed; values were derived with the help of calculations in Ref. [88].

III. THE F t VALUES

With the input data now settled, we can proceed to derive
the f t values for the 20 superallowed transitions included
in the tables. In our last survey [5], we described and

used a new computer code for calculating the statistical rate
function f , which surpassed the precision then being obtained
with measurements of QEC. Since then, with the advent of
Penning-trap mass measurements, experimental uncertainties
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TABLE V. Relative intensities of β-delayed γ rays in the superallowed β-decay daughters. These data are used to determine some of
the branching ratios presented in Table IV. (See Table VIII for the correlation between the alphanumeric reference code used in this table
and the actual reference numbers.)

Parent/daughter Daughter ratiosa Measured γ -ray ratio Average value
nuclei

1 2 Ratio Scale

18Ne 18F γ660/γ1042 0.021 ± 0.003 [Ha75] 0.0169 ± 0.0004 [He82]
0.0172 ± 0.0005 [Ad83] 0.0171 ± 0.0003 1.0

26Si 26Al γ1622/γ829 0.149 ± 0.016 [Mo71] 0.134 ± 0.005 [Ha75]
0.1245 ± 0.0023 [Wi80] 0.1301 ± 0.0062 [Ma08] 0.1269 ± 0.0026 1.3

γ1655/γ829 0.00145 ± 0.00032 [Wi80] 0.0015 ± 0.0003
γ1843/γ829 0.013 ± 0.003 [Mo71] 0.016 ± 0.003 [Ha75]

0.01179 ± 0.00027 [Wi80] 0.0118 ± 0.0003 1.0
γ2512/γ829 0.00282 ± 0.00010 [Wi80] 0.0028 ± 0.0001
γtotal/γ829 0.1430 ± 0.0026

30S 30P γ709/γ677 0.006 ± 0.003 [Mo71] 0.0037 ± 0.0009 [Wi80] 0.0039 ± 0.0009 1.0
γ2341/γ677 0.033 ± 0.002 [Mo71] 0.0290 ± 0.0006 [Wi80] 0.0293 ± 0.0011 1.9
γ3019/γ677 0.00013 ± 0.00006 [Wi80] 0.0001 ± 0.0001
γtotal/γ677 0.0334 ± 0.0014

34Ar 34S γ461/γ666 0.28 ± 0.16 [Mo71] 0.365 ± 0.036 [Ha74a] 0.361 ± 0.035 1.0
γ2580/γ666 0.38 ± 0.09 [Mo71] 0.345 ± 0.01 [Ha74a] 0.345 ± 0.010 1.0
γ3129/γ666 0.67 ± 0.08 [Mo71] 0.521 ± 0.012 [Ha74a] 0.524 ± 0.022 1.8
γtotal/γ666 1.231 ± 0.043

42Ti 42Sc γ2223/γ611 0.012 ± 0.004 [Ga69] 0.012 ± 0.004
γtotal/γ611 0.023 ± 0.012 [Ga69, En90] 0.023 ± 0.012

aγ -ray intensities are denoted by γE , where E is the γ -ray energy in keV.

TABLE VI. References for which the original decay-energy results have been updated to incorporate the most recent calibration
standards. (See Table VIII for the correlation between the alphanumeric reference code used in this table and the actual reference
numbers.)

References (parent nucleus)a Update procedure

Bo64 (18Ne), Ba84 (10C), Br94 (26Alm) We have converted all original (p,n) threshold measurements to Q values
Ba98 (10C), Ha98 (38Km), To03 (14O) using the most recent mass excesses [Au03].
Ry73a (34Cl), Sq76 (46V), Ba77c (34Cl) These (p,n) threshold measurements have been adjusted to reflect recent
Wh77 (14O) calibration α energies [Ry91] before being converted to Q values.
Pr67 (18Ne) Before conversion to a Q value, this (p,n) threshold was adjusted to reflect a

new value for the 7Li(p,n) threshold [Wh85], which was used as calibration.
Ja78 (38Km) This (p,n) threshold was measured relative to those for 10C and 14O; we have

adjusted it based on average Q values obtained for those decays in this work.
Bu79 (38Km) Before conversion to a Q value, this (p,n) threshold was adjusted to reflect the

modern value for the 35Cl(p,n) threshold [Au03], which was used as calibration.
Bu61 (14O), Ba62 (14O) These 12C(3He, n) threshold measurements have been adjusted for updated

calibration reactions based on current mass excesses [Au03].
Ha74d (34Cl) These (3He,t) reaction Q values were calibrated by the 27Al(3He,t) reaction

to excited states in 27Si; they have been revised according to modern mass
excesses [Au03] and excited-state energies [En98].

Ba88 and Ba89 (10C) These measurements of excitation energies in 10B have been updated to
modern γ -ray standards [He00].

Ki89 (42Sc) This 41Ca(p, γ ) reaction Q value was measured relative to that for 40Ca(p, γ );
we have slightly revised the result based on modern mass excesses [Au03].

Ha74c (22Mg, 26Si, 30S, 34Ar) These (p,t) reaction Q values have been adjusted to reflect the current Q

value for the 16O(p,t) reaction [Au03], against which they were calibrated.

aThese references all appear in Table I under the appropriate parent nucleus.
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TABLE VII. References from which some or all results have been rejected even though their quoted uncertainties qualified them for
inclusion. (See Table VIII for the correlation between the alphanumeric reference code used in this table and the actual reference numbers.)

References (parent nucleus) Reason for rejection

1. Decay energies
Pa72 (30S) No calibration is given for the measured (p,t) reaction Q values; update is clearly

required but none is possible.
No74 (22Mg) Calibration reaction Q values have changed but calibration process is too complex

to update.
Ro74 (10C) P. H. Barker (co-author) later considered that inadequate attention had been paid to

target surface purity [Ba84].
Ba77b (10C) P. H. Barker (co-author) later stated [Ba84] that the (p,t) reaction Q value could

not be updated to incorporate modern calibration standards.
Vo77 (14O, 26Alm,34Cl, 42Sc, 46V, 50Mn, 54Co) Most of the results in this reference disagree significantly with more recent and

accurate measurements. Our justification for rejection is presented in more detail in
the text.

Wh81 and Ba98 (14O) The result in [Wh81] was updated in [Ba98] but then eventually withdrawn
by P. H. Barker (co-author) in [To03].

2. Half-lives
Ja60 (26Alm), He61 (14O), Ba62 (14O), Quoted uncertainties are too small, and results likely biased, in light of
Fr63 (14O), Fr65b (42Sc, 46V, 50Mn) statistical difficulties more recently understood (see [Fr69a]). In particular,
Si72 (14O) “maximum-likelihood” analysis was not used.
Ha72a (26Alm,34Cl, 38Km,42Sc) All four quoted half-lives are systematically higher than more recent and

accurate measurements.
Ro74 (10C) P. H. Barker (co-author) later considered that pile-up had been inadequately

accounted for [Ba90].
Ch84 (38Km) “Maximum-likelihood” analysis was not used.

3. Branching ratios
Fr63 (26Si) Numerous impurities are present; result is obviously wrong.

have shrunk even further. The level of precision possible has
currently reached ∼0.001%, at least for the QEC values of
50Mn and 54Co, so it is now necessary to include in the f

calculation a provision for atomic excitation of the daughter
nucleus if the calculation is to continue to match the precision
of the input data. Our method for including this effect is
described in Appendix A; and we also present there, in
Table X, a comparison of f values both with and without this
small correction. It can be seen that the effect of the correction
is comparable to a shift of 0.001%–0.004% in the QEC value,
an amount significant enough to warrant its inclusion in future.
Our final f values are recorded in the second column of
Table IX. They were evaluated by using our updated code
and the QEC values with their uncertainties from column 7 of
Table I.

The third column of Table IX lists (as percentages) the
electron-capture fraction, PEC, calculated for each of the
20 superallowed transitions. The method of calculation was
described in our last survey [5], to which the reader is referred
for more details. The partial half-life, t , for each transition
is then obtained from its total half-life, t1/2, branching ratio,
R, and electron-capture fraction according to the following
formula:

t = t1/2

R
(1 + PEC). (2)

The resultant values for the partial half-lives and the corre-
sponding f t values appear in columns 4 and 5 of the table.

To obtain theF t value from each f t value, we use Eq. (1) to
apply the small transition-dependent correction terms, δ′

R, δNS,
and δC . We take the values of these terms from our recent re-
evaluation of the corrections to superallowed β decay [7]. The
first term, δ′

R , which is listed in column 6 of Table IX, is taken
from Table V in Ref. [7]. The two nuclear-structure-dependent
terms, combined in the form (δC − δNS), are listed in column 7.
In Ref. [7], δC is expressed as the sum of δC1 and δC2, the former
being listed in Table III of that reference and the latter in
Table II; δNS is taken from Table VI of the same reference.
Finally, the resulting F t values are listed in column 8 of our
Table IX.

Both the uncorrected f t values and the fully corrected F t

values are plotted in Fig. 3 for the 13 most precisely measured
transitions. The differences between the former, in the top
panel, and the latter, in the bottom panel, illustrate the effects
of our including the correction terms. It is also worth remarking
that the values of δ′

R are very nearly the same for 11 of the 13
cases plotted: Only 10C and 14O have slightly higher values.
Thus, most of the differences between the two panels of the
figure are due to the effects of the nuclear-structure-dependent
terms, δNS and δC .

A. CVC test

There are now 13 superallowed transitions whoseF t values
have uncertainties less than ±0.4%, with the best case, 26Alm,
being known an order of magnitude better than that. These
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TABLE VIII. Reference key, relating alphanumeric reference codes used in Tables I–VII to the actual reference numbers.

Table Reference Table Reference Table Reference Table Reference Table Reference Table Reference
code number code number code number code number code number code number

Ad83 [9] Aj88 [10] Aj91 [11] Al69 [12] Al72 [13] Al75 [14]
Al77 [15] Al78 [16] Al82 [17] An70 [18] Au03 [19] Az74 [20]
Az75 [21] Ba62 [22] Ba67 [23] Ba77a [24] Ba77b [25] Ba77c [26]
Ba84 [27] Ba88 [28] Ba89 [29] Ba90 [30] Ba98 [31] Ba00 [32]
Ba01 [33] Ba04 [34] Ba06 [35] Ba08 [36] Be68 [37] Be78 [38]
Be85 [39] Be08 [40] Bi03 [41] Bl04a [42] Bl04b [43] Bo64 [44]
Br94 [45] Bu61 [46] Bu79 [47] Bu88 [48] Bu06 [49] Ca05 [50]
Ch84 [51] Cl73 [52] Da80 [53] Da85 [54] De69 [55] De78 [56]
Dr75 [57] En90 [58] En98 [59] Er06a [60] Er06b [61] Er08 [62]
Fa09 [63] Fi08 [64] Fr63 [65] Fr65b [66] Fr69a [67] Fr75 [68]
Fu99 [69] Ga69 [70] Ga01 [71] Ge07 [72] Ge08 [73] Gi72 [74]
Go72 [75] Gr07 [76] Gr08 [77] Ha67 [78] Ha68 [79] Ha72a [80]
Ha74a [81] Ha74b [82] Ha74c [83] Ha74d [84] Ha75 [85] Ha94 [86]
Ha98 [87] Ha02 [88] Ha03 [89] He61 [90] He81 [91] He82 [92]
He00 [93] He01 [94] He02 [95] Ho64 [96] Ho74 [97] Hu82 [98]
Hy03 [99] Hy05 [100] Ia06 [101] Ia08 [102] In77 [103] Is80 [104]
Ja60 [105] Ja78 [106] Je07 [107] Ji02 [108] Ka68 [109] Ka69 [110]
Ke07 [111] Ki89 [112] Ki91 [113] Ko83 [114] Ko87 [115] Ko97a [116]
Ko97b [117] Kr91 [118] Le08 [119] Li94 [120] Ma94 [121] Ma08 [122]
Mc67 [123] Mi67 [124] Mo71 [125] Mu04 [126] Na91 [127] Ni69 [128]
No74 [129] Oi01 [130] Pa72 [131] Pa05 [132] Pi03 [133] Pr67 [134]
Pr90 [135] Ra83 [136] Re85 [137] Ri07 [138] Ro70 [139] Ro72 [140]
Ro74 [141] Ro75 [142] Ro06 [143] Ry73a [144] Ry91 [145] Sa80 [146]
Sa95 [147] Sa04 [148] Sa05 [149] Sc05 [150] Sc07 [151] Se73 [152]
Se05 [153] Sh55 [154] Si66 [155] Si72 [156] Sq75 [157] Sq76 [158]
Ti95 [159] To03 [160] To05 [161] Vo77 [162] Wa83 [163] Wa92 [164]
We68 [165] Wh77 [166] Wh81 [167] Wh85 [168] Wi76 [169] Wi78 [170]
Wi80 [171] Zi72 [172] Zi87 [173]

data are sufficient to provide a very demanding test of the CVC
assertion that the F t values should be constant for all nuclear
superallowed transitions of this type. The data in column 8 of
Table IX clearly satisfy the test, the weighted average of the
13 most precise results being

F t = 3072.08 ± 0.79 s, (3)

with a corresponding chi-square per degree of freedom of
χ2/ν = 0.29. That these 13 F t values form a consistent
set is also clearly evident from the bottom panel of Fig. 3.
Since F t is inversely proportional to the square of the vector
coupling constant, GV , then Eq. (3) can be said to confirm
the constancy of GV —and to verify this key component of the
CVC hypothesis—at the level of 1.3 × 10−4.

Compared with the results of our last survey [5], the value
of F t in Eq. (3) is somewhat lower but carries a similar
uncertainty. However, the new analysis is more demanding
since, for the first time, it includes the 62Ga transition, which
has been very significantly improved in the past four years.
This effectively increases the span of masses over which the
CVC test is being applied; yet even with this addition, the χ2/ν

is actually lower than it was previously. The small reduction in
the central value of F t is within the uncertainty of the previous
value; it has arisen from a combination of factors: changes in
the experimental data base, which have acted to increase F t ,

and recent improvements in the nuclear-structure-dependent
correction terms [7], which have acted to lower it.

B. F t value error budgets

We show the contributing factors to the individual F t value
uncertainties in Fig. 4 for the “traditional nine” cases and
in Fig. 5 for the remaining 11. For most of the cases that
contribute to the CVC test—26Alm to 54Co in Fig. 4 as well
as 62Ga and 74Rb in Fig. 5—the theoretical uncertainties are
greater than, or comparable to, the experimental ones. In these
cases, the nuclear-structure-dependent correction, δC − δNS,
contributes an uncertainty of 3–7 parts in 104 to all F t values
between 26Alm and 54Co but jumps up to 20–30 parts in 104

for 62Ga and 74Rb because of nuclear-model ambiguities. For
its part, the nucleus-dependent radiative correction, δ′

R , has an
uncertainty that starts very small but grows smoothly with Z2.
This is because the contribution to δ′

R from order Z2α3 has
only been estimated from its leading logarithm [176] and the
magnitude of this estimate has been taken as the uncertainty
in δ′

R . As a result, though, for 50Mn and 54Co it becomes the
leading uncertainty, indicating that a closer look at the order
Z2α3 contribution to δ′

R would certainly now be worthwhile.
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TABLE IX. Derived results for superallowed Fermi β decays.

Parent f PEC Partial half-life f t (s) δ′
R (%) δC − δNS (%) F t (s)

nucleus (%) t (ms)

Tz = −1
10C 2.3004 ± 0.0012 0.297 1322300 ± 1800 3041.7 ± 4.3 1.679 ± 0.004 0.520 ± 0.039 3076.7 ± 4.6
14O 42.772 ± 0.023 0.088 71127 ± 51 3042.3 ± 2.7 1.543 ± 0.008 0.575 ± 0.056 3071.5 ± 3.3
18Ne 134.47 ± 0.15 0.081 21660 ± 590 2912 ± 79 1.506 ± 0.012 0.855 ± 0.052 2931 ± 80
22Mg 418.39 ± 0.17 0.069 7295 ± 17 3052.0 ± 7.2 1.466 ± 0.017 0.605 ± 0.030 3078.0 ± 7.4
26Si 1029.4 ± 2.2 0.064 2954 ± 23 3041 ± 24 1.438 ± 0.023 0.650 ± 0.034 3065 ± 25
30S 1966.9 ± 8.0 0.066 1524 ± 21 2998 ± 44 1.423 ± 0.029 1.040 ± 0.032 3009 ± 44
34Ar 3414.5 ± 1.5 0.069 894.0 ± 2.4 3052.7 ± 8.2 1.412 ± 0.035 0.845 ± 0.058 3069.6 ± 8.5
38Ca 5327.2 ± 1.8 0.075 1.414 ± 0.042 0.940 ± 0.072
42Ti 7040 ± 30 0.088 470 ± 160 3300 ± 1100 1.428 ± 0.050 1.170 ± 0.080 3300 ± 1100

Tz = 0
26Alm 478.237 ± 0.080 0.082 6350.2 ± 1.9 3036.9 ± 0.9 1.478 ± 0.020 0.305 ± 0.027 3072.4 ± 1.4
34Cl 1995.96 ± 0.47 0.080 1527.77+0.44

−0.47 3049.4+1.1
−1.2 1.443 ± 0.032 0.735 ± 0.048 3070.6 ± 2.1

38Km 3297.88 ± 0.34 0.085 925.42 ± 0.28 3051.9 ± 1.0 1.440 ± 0.039 0.755 ± 0.060 3072.5 ± 2.4
42Sc 4472.24 ± 1.15 0.099 681.44 ± 0.26 3047.6 ± 1.4 1.453 ± 0.047 0.630 ± 0.059 3072.4 ± 2.7
46V 7209.47 ± 0.90 0.101 422.99 ± 0.11 3049.5 ± 0.9 1.445 ± 0.054 0.655 ± 0.063 3073.3 ± 2.7
50Mn 10745.97 ± 0.51 0.107 283.68 ± 0.11 3048.4 ± 1.2 1.444 ± 0.062 0.695 ± 0.055 3070.9 ± 2.8
54Co 15766.6 ± 2.9 0.111 193.495+0.063

−0.086 3050.8+1.1
−1.5 1.443 ± 0.071 0.805 ± 0.068 3069.9+3.2

−3.3
62Ga 26400.2 ± 8.3 0.137 116.441 ± 0.042 3074.1 ± 1.5 1.459 ± 0.087 1.52 ± 0.21 3071.5 ± 7.2
66As 32125 ± 470 0.155 1.468 ± 0.095 1.62 ± 0.40
70Br 38600 ± 3600 0.175 1.49 ± 0.11 1.69 ± 0.25
74Rb 47300 ± 110 0.194 65.227 ± 0.078 3084.9 ± 7.8 1.50 ± 0.12 1.71 ± 0.31 3078 ± 13

Average (best 13), F t 3072.08 ± 0.79
χ 2/ν 0.29

For all the transitions from Tz = 0 parent nuclei, the
experimental branching ratios are >99% and have very small
associated uncertainties with the exception of 54Co, which has
a 3 × 10−4 fractional uncertainty attributed to its branching
ratio, and 74Rb, which has 10 × 10−4. In both cases, this
is because they are predicted to have weak Gamow-Teller
branches that have not yet been observed. We have used an
estimate of the strength of the missing branches, taken from
a shell-model calculation [88], to assign an uncertainty to the
superallowed branching ratio. Numerous weak Gamow-Teller
branches become an increasingly significant issue for the
heavier-mass nuclei with A � 62, where they present a major
experimental challenge if they are to be fully characterized.
Only in the case of 62Ga has this been accomplished so far.

For the decays of 10C and 14O, and for all the decays
depicted in Fig. 5 except for 62Ga and 74Rb, the predom-
inant uncertainties are experimental in origin. Many of the
experimental branching ratios and some of the Q values and
half-lives have yet to be measured precisely for the cases in
Fig. 5, but recent advances in experimental techniques have
been improving this situation and are likely to improve it even
more within the next few years.

C. Accounting for systematic uncertainties

So far, we have dealt with the internuclear behavior of F t

values, examining their constancy as a test of CVC. With that
test passed at high precision, we are now in a position to use

the average F t value obtained from these concordant nuclear
data to go beyond nuclei, obtaining first the vector coupling
constant [see Eq. (1)] and then the Vud matrix element. Before
doing so, however, we must address one more possible source
of uncertainty. Though the average F t value given in Eq. (3)
includes a full assessment of the uncertainties attributable to
experiment and to the particular calculations used to obtain
the correction terms, it does not incorporate any provision
for a common systematic error that could arise from the type
of calculation chosen to model the nuclear-structure effects.
To discuss this, we divide the problem into two parts: the
accuracy of the model as an approximation to the formally
complete treatment and the possible existence of systematic
uncertainties within the model.

1. The model approximation

Very recently Miller and Schwenk [177] have explored the
formally complete approach to isospin-symmetry breaking.
Their starting point is to define the Fermi matrix element as

MF = 〈f |τ+|i〉 =
∑

α

〈f |a†
αbα|i〉 =

∑
α,π

〈f |a†
α|π〉〈π |bα|i〉,

(4)

where a†
α creates a neutron and bα annihilates a proton in state

α. Here |i〉 and |f 〉 are the exact state vectors for the full
Hamiltonian. If this Hamiltonian commutes with the isospin
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inclusion of the correction terms δ′
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band in the bottom panel gives one standard deviation around the
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operators, then |i〉 and |f 〉 are exact isospin analogs of each
other, 〈π |bα|i〉 = 〈f |a†

α|π〉∗, and the symmetry-limit matrix
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transitions. Where the error is shown as exceeding 60 parts in 104, no
useful experimental measurement has been made.

element is

M0 =
∑
α,π

|〈f |a†
α|π〉|2. (5)

If isospin is not an exact symmetry, then |i〉 and |f 〉 are not
isospin analogs and a correction to M0 needs to be evaluated.
This is the isospin-symmetry-breaking correction, δC , we seek
to determine. It is defined by

M2
F = M2

0 (1 − δC). (6)

Ideally, to obtain δC one would compute Eq. (4) using the shell
model and introduce Coulomb and other charge-dependent
terms into the shell-model Hamiltonian. However, because the
Coulomb force is long range, the shell-model space would
have to be huge to include all the potential states with which
the Coulomb interaction might connect. Currently, this is not
a practical proposition.

To proceed with a manageable calculation, we have devel-
oped a model approach [7,178,179] in which δC is divided into
two parts:

δC = δC1 + δC2. (7)

For δC1, we compute∑
α,π

〈f̄ |a†
α|π〉〈π |bα|ı〉 = M0(1 − δC1)1/2, (8)
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where |ı〉 and |f̄ 〉 are not the exact eigenstates that appear
in Eq. (4) but are the shell-model eigenstates of an effective
Hamiltonian (including charge-dependent terms) evaluated in
a modest-sized shell-model space. Since this space does not
allow for nodal mixing, we correct for that limitation by
computing the second component, δC2, obtained from∑

α,π

|〈f̄ |a†
α|π〉|2rπ

α = M0(1 − δC2)1/2, (9)

where each rπ
α is a radial overlap integral of proton and neutron

radial functions. We justify the efficacy of this second term by
the following arguments: If the radial functions were identical,
then δC2 would vanish as it should. Otherwise the proton radial
functions, up(r), could be expanded in terms of a complete set
of neutron functions, un

N (r), including all possible radial nodes,
N :

up(r) =
∑
N

aNun
N (r). (10)

The isospin-symmetry-breaking correction, δC2, could then be
expressed in terms of aN , which from perturbation theory could
itself be written in terms of matrix elements of the Coulomb
interaction. This would be equivalent to the nodal mixing
included in Eq. (4) but left out of the calculation of δC1 in
Eq. (8). The idea is that δC1 is the result of a tractable
shell-model calculation that does not include any nodal mixing,
while δC2 then corrects for the nodal mixing that would be
present if the shell-model space were larger.

Clearly our charge-dependent correction terms [7,178,179]
are based on a model and required approximations to make the
computation possible. Since no one has yet made a complete
calculation without approximations, it is impossible to be
definitive about any systematic errors that might be introduced
by our methods. Only for the lightest superallowed emitter,
10C, has it been possible so far even to come close to an exact
treatment. Caurier et al. [180] have reported a large no-core
shell-model calculation for that system but, even though they
were able to extend their basis states up to 8h̄ω, their calculated
δC still had not converged to a stable value. However, they used
their results together with perturbation theory to estimate that
the full value of δC should be about 0.19%. This result, which
in effect used Eq. (4) and did not split δC into two parts, agrees
completely with our calculated value for δC = δC1 + δC2 of
0.18(2)% (see Table VII in Ref. [7]). This agreement certainly
supports the validity of our model.

Furthermore, it must be noted that our model approach
has allowed us to use well-established shell-model and related
parameters, which were determined from experimental data
that are completely independent of the superallowed f t values.
As is clearly evident from Fig. 3, these calculated corrections
do a remarkable job in converting widely scattered f t values
into a consistent set of F t values. Not only that but, as shown
in Ref. [7], they also closely reproduce the measured results
for isospin-forbidden 0+ → 0+ β transitions in all nuclei for
which the shell-model calculation is well specified. (This is
not the case for 62Ga.) Of course, although these successes
demonstrate that our calculated δC values correctly reproduce
the nucleus-to-nucleus variations observed by experiment,
they cannot rule out a constant shift in the corrections for

all nuclei. Even so, it seems highly unlikely that a faulty
approximation could lead to relative results that are correct
in every detail, while being consistently wrong—and by the
same constant amount—in the absolute values for each and
every case.

Under the circumstances, we see no justification at this
time to assign any additional systematic error to account for
possible inadequacies of the model we use to calculate the
charge-dependent correction terms.

2. Systematic uncertainty within the model

As introduced in Eq. (7) the isospin-symmetry-breaking
correction, δC , is separated into two pieces: δC1 comes from
configuration mixing in a modest-sized shell-model calcula-
tion with charge-dependent interactions and δC2 involves radial
overlap integrals. The calculation of δC1, the smaller of the two
terms, requires a reliable shell-model description of the nuclei
involved but it can also be further constrained by independent
experimental data—for example, the measured coefficients of
the corresponding isobaric multiplet mass equation (IMME).
We take our corrections from Ref. [7] where the uncertainties
attached to the calculated values of δC1 for the 20 cases of
interest here already include ample provision for differences
between competing shell-model parametrizations as well as
for experimental uncertainties on the IMME coefficients used
as constraints.

The values of the radial-overlap term, δC2, which we use as
input to Table IX, were also taken from our recently published
calculations [7]. Those calculations used radial wave functions
derived from a Saxon-Woods potential with either the well
depth or one of the surface terms in the potential adjusted
so that the binding energy of each computed eigenfunction
matched the corresponding measured separation energy. The
quoted uncertainties included provision for any variations
in the results depending on which parameter was used in
the adjustment. However, no provision was included for pos-
sible differences that might occur if another method entirely
were used to derive the radial wave functions. In the past [5], we
have accounted for this uncertainty by comparing our results
for δC2 with those of Ormand and Brown [181–183], who used
Hartree-Fock eigenfunctions and obtained consistently smaller
corrections than those we found with a Saxon-Woods potential.
We treated this as a valid source of systematic uncertainty and
incorporated it by deriving two average F t values, one for
each set of δC2 calculations, then taking the average of the two
and assigning a systematic uncertainty equal to half the spread
between them.

This specific comparison is no longer tenable. The Ormand
and Brown calculations are in some cases more than two
decades old: They use smaller shell-model spaces than are
now known to be necessary [7] and they are not available at
all for some of the transitions that we now need to include.
To remedy these deficiencies we have undertaken our own
Hartree-Fock calculations. They are described in detail in
Appendix B, where Table XI lists the values of δC2 we compute
from Hartree-Fock-derived wave functions and compares them
with our earlier results from the Saxon-Woods potential [7],
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the same results that we used to evaluate F t in Table IX. Both
methods used exactly the same shell-model calculations to
determine the full parentage of the states involved.

With these new Hartree-Fock calculations we can now
follow a similar procedure to the one we employed with
the old calculations in our previous survey [5]. We begin by
substituting the Hartree-Fock δC2 values for the Saxon-Woods
ones in deriving the δC values used in Table IX. When we
do this the F t value result becomes 3071.55 ± 0.89 s with
χ2/ν = 0.93. This normalized chi-square is three times what
we obtained in Table IX with the Saxon-Woods corrections,
which arguably could justify our rejecting the Hartree-Fock
results outright. However, to be safe, we proceed as before
and take the average of the Hartree-Fock and Saxon-Woods
results, adding a systematic uncertainty equal to half the spread
between the two results. Thus, we obtain

F t = 3071.81 ± 0.79stat ± 0.27syst s

= 3071.81 ± 0.83 s, (11)

where on the second line the two uncertainties have been
added in quadrature. Our new systematic adjustment amounts
to only 0.27 s, much smaller and of opposite sign to the 0.90-s
correction applied previously [5].

It is the value for F t in Eq. (11) that we carry forward to
subsequent sections where we obtain Vud and test the unitarity
of the CKM matrix.

IV. THE IMPACT ON WEAK-INTERACTION PHYSICS

A. The value of Vud

With a mutually consistent set of F t values, we can now
use the adjusted average value in Eq. (11) to determine the
vector coupling constant, GV , from Eq. (1). The value of GV

itself is of little interest but, together with the weak interaction
constant for the purely leptonic muon decay, GF , it yields
the much more interesting up-down element of the Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix. The basic
relationship is Vud = GV /GF , which in terms of F t becomes

V 2
ud = K

2G2
F

(
1 + �V

R

)
F t

, (12)

where �V
R is the nucleus-independent radiative correction.

This correction has recently been carefully re-examined by
Marciano and Sirlin [6], who very substantially reduced its
uncertainty. Expressing their new result in a way that is
consistent with the definition of our other correction terms,
we obtain (see Eq. (41) in Ref. [7])

�V
R = (2.361 ± 0.038)%. (13)

Using the Particle Data Group (PDG) [174] value for
the weak interaction coupling constant from muon decay of
GF /(h̄c)3 = (1.16637 ± 0.00001) × 10−5 GeV−2, we obtain
from Eq. (12) the result

|Vud |2 = 0.94916 ± 0.00044. (14)

Note that the total uncertainty here is almost entirely due to the
uncertainties contributed by the theoretical corrections. By far
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FIG. 6. Values of Vud as determined from superallowed 0+ → 0+

β decays plotted as a function of analysis date, spanning the past two
decades. In order, from the earliest date to the most recent, the values
are taken from Refs. [4,5,184,185] and this work.

the largest contribution, 0.00035, arises from the uncertainty
in �V

R ; 0.00020 comes from the nuclear-structure-dependent
corrections δC − δNS and 0.00004 is attributable to δ′

R . Only
0.00016 can be considered to be experimental in origin.

The corresponding value of Vud is

|Vud | = 0.97425 ± 0.00022, (15)

a result that is consistent with, but more precise than, values we
have obtained in previous analyses of superallowed β decay.
To emphasize the consistency and steady improvement that
has characterized the value of Vud as derived from nuclear
β decay, in Fig. 6 we plot our new result together with Vud

values published at various times over the past two decades
[4,5,184,185]. However, this steady improvement evident from
survey to survey does not reveal the dramatic events that have
occurred between the last survey, published in 2005, and the
present one. Although the four-year net change in Vud has been
within the previously quoted uncertainty, if snapshots of Vud

had been taken at regular intervals during the past four years,
would they have revealed larger upheavals?

As explained in Sec. II B, the upheavals began with the
first Penning-trap QEC value results. These results ultimately
demonstrated that an important set of reaction-based QEC

value measurements, which were published in 1977 and have
played an important role in data surveys ever since, were
seriously flawed. The removal of this data set affected seven
QEC values in all and was perhaps the most serious blow that
could have been dealt to the data base in a single stroke. To
isolate the impact of these and other experimental changes
from the impact of the theoretical changes that have also
taken place during the same time period, we have analyzed
the experimental data in Tables I–IV using exactly the same
theoretical corrections as were used in the 2005 survey. The
result for F t is 3074.1(7) s, with χ2/ν = 1.1, compared with
the 2005 value of 3072.7(8) s, with χ2/ν = 0.42. The shift
in the central value is nearly twice the standard deviation of
the 2005 result. Even so, if we proceed in the same spirit
to calculate Vud using the new experimental data combined
with the 2005 theoretical corrections, we obtain the result
0.9736(4), which is to be compared with the 2005 value
quoted for Vud of 0.9738(4). In contrast to the F t values,
these numbers agree well within their uncertainties, although
it has to be noted that the error bar quoted for Vud was—and
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still is—dominated by provisions for theoretical uncertainties.
It is this large window for possible theoretical shortcomings
that absorbs the unexpectedly large shift in the experimental
input instead.

Clearly the large number of measurements that contribute
to the nuclear determination of Vud provides a robust data base,
one that has proven capable of absorbing even a severe blow
without causing a radical shift in the critical results. There is
a further feature of these nuclear decays, whose importance is
also illustrated by the events of the past four years: the fact
that there are many transitions—currently 13—that all should
give consistent results. As we have already indicated, the new
experimental data base analyzed with the 2005 theoretical
corrections yields a χ2/ν value for F t that is nearly three
times larger than the result in 2005. It is also obvious by a
visual inspection of a plot of these F t values that something
is wrong, and it was this observation that led to improvements
in the theoretical corrections, which have been applied in this
survey.

B. Unitarity of the CKM matrix

The CKM matrix transforms one set of quark basis states
into another: It transforms the quark-mass eigenstates into the
weak-interaction eigenstates. If both sets are complete and
orthonormal, then the transformation matrix itself must be
unitary. The standard model does not prescribe the individual
elements of the CKM matrix—they must be determined
experimentally—but absolutely fundamental to the model is
the requirement that the matrix be unitary. Whether unitarity
is satified in practice can be tested experimentally, the severity
of the test depending on the precision with which the CKM
matrix elements can be determined.

To date, the most demanding test of CKM unitarity comes
from the sum of squares of the top-row elements, |Vud |2 +
|Vus |2 + |Vub|2, which should equal one. Since |Vud |2 consti-
tutes 95% of this sum, the precision on Vud is of paramount
importance. The value of |Vud | = 0.97425(22) derived in
Sec. IV A has a precision of 0.02%, which is the most precise
result so far obtained for this matrix element and is, by more
than an order of magnitude, the most precisely determined
value for any element in the CKM matrix. Alternative methods
of obtaining Vud from neutron β decay [Vud = 0.9746(18)]
and from pion β decay [Vud = 0.9749(26)]—with both values
taken from the PDG’s 2008 compilation [174]—are much less
precise and have been hampered by experimental difficulties.
In the case of the neutron, not only is physical containment a
problem but the axial-vector contribution to its β decay must
be separated from the vector contribution by a β-asymmetry
measurement; for pion β decay a very small branching
fraction, O(10−8), must be measured.

At the time of our last survey [5] the value of Vus was in
a state of flux. The 2004 PDG value was |Vus | = 0.2200(26),
based mostly on measurements that were at least two decades
old, but new results then emerging were suggesting a value
some two standard deviations higher. In the past four years,
these new results on the semileptonic decays, K�3, of both
charged and neutral kaons—from BNL-E865 [186], KTeV

[187], NA48 [188], KLOE [189], and ISTRA+ [190]—have
all combined to clarify the situation. Now, current averages by
the 2008 PDG [174] and FlaviaNet [8] for kaon semileptonic
branching fractions are based only on recent, high-statistics
experiments, which are also consistent with one another. The
best current value, presented at the CKM2008 Workshop [191]
by the FlaviaNet group, is

f+(0)|Vus | = 0.21673 ± 0.00046. (16)

Here f+(0) is the semileptonic decay form factor at zero-
momentum transfer. Its value is close to unity. In fact, the
CVC hypothesis in the exact SU(3) symmetry limit establishes
its value to be exactly one, but SU(3) symmetry is broken
to some extent and a theoretical calculation is required to
estimate the departure of f+(0) from unity. Currently, there are
two classes of evaluation: analytic or semianalytic approaches
based on chiral perturbation theory [192–196] and those based
on lattice QCD [197–199]. We will follow the FlaviaNet group
and adopt the lattice value of f+(0) = 0.9644 ± 0.0049 from
the RBC-UKQCD Collaboration [197], which yields

|Vus | = 0.2247 ± 0.0012. (17)

An independent determination of Vus can be obtained from
the purely leptonic decay of the kaon, the most important
mode being K+ → µ+ν. If it is considered as a ratio with
the leptonic decay of the pion, π+ → µ+ν, the hadronic
uncertainties can be minimized and the result yields the ratio
of the CKM matrix elements |Vus |/|Vud |. In the analysis of the
FlaviaNet group [8] the current result is

|Vus |
|Vud | × fK

fπ

= 0.2760 ± 0.0006, (18)

where fK and fπ are the kaon and pion decay constants,
respectively. This ratio of pseudoscalar decay constants has
to be obtained from theory, for which lattice QCD seems to
be the only reliable source. Again, following the FlaviaNet
group we adopt the lattice result from the MILC-HPQCD
Collaboration [200], fK/fπ = 1.189 ± 0.007, and obtain

|Vus |
|Vud | = 0.2321 ± 0.0015. (19)

Thus, we now have three pieces of data—|Vud | from nuclear
decays, Eq. (15), |Vus | from K�3 decays, Eq. (17), and the
ratio |Vus |/|Vud | from K�2 decays, Eq. (19)—from which to
determine two parameters, |Vud | and |Vus |. We perform a
nonlinear least squares fit to obtain the result

|Vud | = 0.97424(22), |Vus | = 0.22534(93). (20)

Note that the value of |Vud | obtained from this fitting procedure
has only changed by one unit in the last figure compared to
Eq. (15); and the change in |Vus | compared to Eq. (17), though
somewhat larger, is still well within the quoted uncertainties.

The third element of the top row of the CKM matrix, Vub,
is very small and hardly impacts on the unitarity test at all.
Its value from the 2008 PDG compilation [174] is |Vub| =
(3.93 ± 0.35) × 10−3. Combining this number with the ones
in Eq. (20) we find the sum of the squares of the top-row
elements of the CKM matrix to be

|Vud |2 + |Vus |2 + |Vub|2 = 0.99995 ± 0.00061, (21)
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a result that shows unitarity to be fully satisfied at the
0.06% level. Only Vus and Vud contribute perceptibly to the
uncertainty and their contributions are almost equal to one
another. This may seem surprising since Vud is known to much
higher precision than Vus , but it follows from the fact that |Vud |2
contributes 95% to the unitarity sum.

C. Limit on scalar interactions

1. Fundamental scalar current

In our previous survey [5] we explained in detail how a
scalar current, if it existed, would affect the F t value data.
We demonstrated that its effect on F t would be approximately
proportional to 〈1/W 〉, the average inverse decay energy of
each β+ transition, so its presence would be manifest by F t

values that are not constant as a function of Z. Since 〈1/W 〉
increases monotonically as Z decreases, the largest deviation
of F t from constancy would occur for the superallowed
transitions from nuclei with the lowest Z,10C, and 14O.

We have now repeated the same analysis on our new survey
results. We evaluated the statistical rate functions, f , with a
shape-correction factor that included the presence of a scalar
current via the Fierz interference term, bF , which we treated
as an adjustable parameter. We then sought the value of bF

that minimized χ2 in a least-squares fit to the expression F t =
constant. The result we obtained is

bF = −0.0022 ± 0.0026, (22)

which is consistent with zero, as it was in 2005 [5]. In
Fig. 7 we illustrate the sensitivity of this analysis by plotting
the measuredF t values together with the loci ofF t values that
would be expected if bF = ±0.004. Obviously, the measured
F t values do not exhibit any statistically significant curvature.

The result in Eq. (22) can also be expressed in terms of the
coupling constants that Jackson, Treiman, and Wyld [201] used
in writing a general form for the weak-interaction Hamiltonian.
Since we are dealing only with Fermi superallowed transitions,
we can restrict ourselves to scalar and vector couplings, for
which that Hamiltonian becomes

HS+V = (ψpψn)(CSφeφνe
+ C ′

Sφeγ5φνe
)

+ (ψpγµψn)[CV φeγµ(1 + γ5)φνe
], (23)
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FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

where we have taken the vector current to be maximally parity
violating, as indicated by experiment [202]. The complexity of
the relationship between bF and the couplings CS,C

′
S , and CV

depends on what assumptions are made about the properties
of the scalar current. If we take the most restrictive conditions,
that the scalar and vector currents are time-reversal invariant
(i.e., CS and CV are real) and that the scalar current, like the
vector current, is maximally parity violating (i.e., CS = C ′

S),
then we can write

CS

CV

= −bF

2
= +0.0011 ± 0.0013. (24)

This limit from superallowed β decay is, by far, the tightest
limit on the presence of a scalar current under the assumptions
stated.

If we remove the condition that the scalar current be
maximally parity violating, then the expression contains two
unknowns,

bF = −2CV (CS + C ′
S)

2|CV |2 + |CS |2 + |C ′
S |2

� −
(

CS

CV

+ C ′
S

CV

)
, (25)

and cannot be solved individually for CS/CV and C ′
S/CV .

However, the β-ν angular-correlation coefficient, a, for a
superallowed 0+ → 0+ β transition provides another inde-
pendent measure of CS and CV . In that case,

a = 2|CV |2 − |CS |2 − |C ′
S |2)

2|CV |2 + |CS |2 + |C ′
S |2

� 1 − 1

2

(∣∣∣∣ CS

CV

∣∣∣∣
2

+
∣∣∣∣ C ′

S

CV

∣∣∣∣
2
)

, (26)

which, together with Eq. (25), can be used set limits on both
CS/CV and C ′

S/CV . Currently, the most precise measurement
of such a β-ν angular correlation is for the superallowed decay
of 38K [203]. In this case, what was actually measured is ã =
a/(1 + γ bF me/〈W 〉), where γ =

√
1 − (αZ)2 and me is the

mass of the electron.1 The results in terms of CS/CV and
C ′

S/CV are plotted in Fig. 8. The value of ã taken from
Ref. [203] leads to the gray annulus plotted in the figure,
whereas our result for bF from Eq. (22) is responsible for the
narrow diagonal band. The intersection of these two regions,
which is in black, defines the 68% confidence limit (one
standard deviation) for CS/CV and C ′

S/CV . It corresponds
to the limit ∣∣∣∣ CS

CV

∣∣∣∣ � 0.065 (27)

and exactly the same limit for C ′
S/CV .

The Jackson-Treiman-Wyld Hamiltonian [201] is a
parametrization of one possible extension to the standard
model. The coupling constants CS and C ′

S are not prescribed by
the authors but are simply parameters that must be determined
from experiment. One model that actually introduces scalar
interactions in a natural way is the minimal supersymmetric
standard model (MSSM). A valuable review of low-energy

1Our bF is defined differently from the b used in Ref. [203]. The
two are related by bF = b/γ .
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FIG. 8. Allowed range of values for CS/CV and C ′
S/CV as

determined from the 38K β-ν angular-correlation measurement [203]
(gray annulus) and from superallowed 0+ → 0+ β decays (narrow
diagonal band). The overlap region is shaded in black. We plot the
68% confidence limits.

tests of this model has recently been published by Ramsey-
Musolf and Su [204]. In the MSSM a radiative correction to the
β-decay amplitude involves box graphs with exchanged super-
symmetric fermions. These produce an energy dependence in
the β-decay amplitude that shows up in the Fierz interference
term. Unfortunately, estimates by Profumo, Ramsey-Musolf,
and Tulin [205] indicate that the resulting value of bF would be
less than 10−3, which is an order of magnitude smaller than our
current experimental upper limit on that quantity. Thus it will
likely be some time before superallowed β decay can provide
useful constraints for this class of supersymmetric models.

2. Induced scalar current

If we consider only the vector part of the weak interaction,
for composite spin-1/2 nucleons the most general form of that
interaction is written [206] as

HV = ψp(gV γµ − fMσµνqν + ifSqµ)ψn φeγµ(1 + γ5)φνe
,

(28)

with qµ being the four-momentum transfer, qµ = (pp − pn)µ.
The values of the coupling constants gV (vector), fM (weak
magnetic), and fS (induced scalar) are prescribed so long
as the CVC hypothesis—that the weak vector current is just
an isospin rotation of the electromagnetic vector current—is
correct. In particular, since CVC implies that the vector current
is divergenceless, it follows that fS should equal zero. An
independent argument [207], that there be no second-class
currents in the hadronic weak interaction, also requires fS to
vanish. We proved in our previous survey [5] that the presence
of a nonzero fS would manifest itself in exactly the same way
as a nonzero CS : by a 〈1/W 〉 dependence in the F t value data.

In the same manner that we obtained Eqs. (22) and (24),
we determine from our present survey results that

mefS/gV = −(0.0011 ± 0.0013). (29)

This result is a vindication for the CVC hypothesis, which
predicts gV = 1 and fS = 0. We confirm this prediction at the
level of 24 parts in 104. Our result can also be interpreted

as setting a limit on vector second-class currents in the
semileptonic weak interaction.

D. Limits on extensions to the standard model

The unitarity sum established in Sec. IV B can be used
to set limits on new physics beyond the standard model.
A list of possible extensions includes, but is certainly not
limited to, right-hand currents, extra Z bosons, scalars,
supersymmetry, a fourth generation of quarks, and exotic muon
decay. Marciano surveyed many of these possibilities at the
CKM2008 Workshop [191]. His general conclusion was that,
although the CKM unitarity test yields no sign of new physics,
it does place important constraints on the possibilities. In the
case of supersymmetric models these constraints have been
explored by Ramsey-Musolf and co-workers [204,208,209]. In
the minimal supersymmetric version (MSSM), corrections to
low-energy observables arise only via loop effects, whereas in
extensions that allow for R-parity violating (RPV) interactions
new tree-level effects appear. In general, the presence of new
physics may modify low-energy semileptonic electroweak
observables in two ways: (i) directly, via a new semileptonic
interaction (e.g. right-hand currents, MSSM with RPV inter-
actions), and (ii) indirectly, via loop graphs contributing to
the radiative correction (e.g. extra Z bosons, MSSM). In what
follows we give one example of each type of modification:
right-hand currents and extra Z bosons.

1. Right-hand currents

In the standard model, parity violation is considered to
be maximal. What if this condition were to be relaxed?
For semileptonic transitions, Herczeg [210,211] extends the
general form of the weak interaction to read

Hs� = aLL(V − A)(V − A) + aLR(V − A)(V + A)

+ aRL(V + A)(V − A) + aRR(V + A)(V + A), (30)

where, in each term, the first factor represents the lepton
currents and the second the hadron currents. In particular,
for the vector lepton current, V stands for either φeγµφL

νe
or

φeγµφR
νe

depending on whether the chirality of the neutrino is
left-handed, as it is for V − A coupling, or right-handed, as it
is for V + A coupling. In the standard model, aLL = 1, and
aLR = aRL = aRR = 0. For Fermi β decay, only the vector
part of the weak hadron current contributes, so the decay rate
is given by the following proportionality [5]:

�β ∝ |aLL + aLR|2 + |aRL + aRR|2
� |aLL|2(1 + 2 Re aLR + · · ·), (31)

where aLR = aLR/aLL. In the second line of the equation,
we have only retained quantities that are first order in the
(presumably) small quantities aLR, aRL, and aRR .

To determine the effect that right-hand currents would have
on the value of Vud obtained from experiment, we also need
to consider the role of such currents on the purely leptonic
muon decay. Herczeg [210] writes the effective Hamiltonian,
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in analogy to Eq. (30), as

H� = cLL(V − A)(V − A) + cLR(V − A)(V + A)

+ cRL(V + A)(V − A) + cRR(V + A)(V + A). (32)

The coupling constants in Eqs. (32) and (30) are related by the
CKM matrix elements through

aLL = cLLV L
ud, aLR = cLReiαV R

ud,
(33)

aRL = cRLV L
ud, aRR = cRReiαV R

ud .

Here V L
ud is the element of the CKM matrix for left-handed

chirality quarks, and V R
ud is for right-handed chirality quarks.

The phase α is a CP -violating phase in the right-handed CKM
matrix. The decay rate for muon decay is constructed from
an equal mix of vector and axial-vector interactions and is
proportional to the following expression [5]:

�µ ∝ |cLL|2 + |cLR|2 + |cRL|2 + |cRR|2
= |cLL|2(1 + |cLR|2 + |cRL|2 + |cRR|2), (34)

where cij = cij /cLL.
If we define |Vud |2expt as being the quantity obtained from

the ratio of measured β- and muon-decay rates, we can
combine Eqs. (31) and (34) to relate this experimental result
to the matrix element |V L

ud |2 by the relationship

|Vud |2expt ≡ �β

�µ

= ∣∣V L
ud

∣∣2 |1 + aLR|2 + |aRL + aRR|2
1 + |cLR|2 + |cRL|2 + |cRR|2

� ∣∣V L
ud

∣∣2
(1 + 2 Re aLR), (35)

where, in the second line, only corrections to first order in
small quantities are retained. If the situation is identical for the
second (kaon decay) and third (B-meson decay) generations
of quarks, with the interaction coupling constants aij and cij

in Hs� and H� being generation independent, then∑
i

|Vui |2expt =
∑

i

∣∣V L
ui

∣∣2
(1 + 2 Re aLR)

= 1 + 2 Re aLR. (36)

In writing the second line we have assumed that the CKM
matrix for left-hand chirality quarks is strictly unitary. Since
the left-hand side of Eq. (36) is the experimentally determined
unitarity sum, given in Eq. (21) of Sec. IV B, this expression
can clearly be used to set a limit on the coupling constant aLR .
The result is

0.99995 ± 0.00061 = 1 + 2 Re aLR,

Re aLR = −0.00003 ± 0.00030, (37)

which is consistent with no right-hand currents—at least not
in the LR sector.

2. Extra Z bosons

The existence of neutral gauge bosons, beyond the usual
photon and Z boson of the standard SU(2)L × U(1) model,
would impact on the CKM unitarity test. To illustrate this
we consider just one of the many models that appear in

grand unified theories, namely the SO(10) model, whose group
breakdown is

SO(10) → SU(3)C × SU(2)L × U(1) × U(1)χ . (38)

Here an extra U(1) group is introduced, U(1)χ , and its cor-
responding neutral gauge boson is labeled Zχ . The existence
of such an extra Z boson would impact on the calculation
of the electroweak radiative correction. One of the important
diagrams in the hadron-independent radiative correction, �V

R ,
is a WZ-box graph. This graph would have to be augmented
by an additional WZχ -box graph, whose contribution is of
order ln xχ , where xχ = m2

Zχ
/m2

W , the ratio of squared masses
of the heavy bosons in the box diagram. If we assume that
this correction is common to all quark flavours, then the same
correction that occurs in the determination of |Vud |2 would also
occur for |Vus |2 and |Vub|2. If so, its impact can be incorporated
into the unitarity test.

Following Marciano and Sirlin [212], we write

|Vud |2 + |Vus |2 + |Vub|2 = (0.99995 ± 0.00061) + �, (39)

where the numerical value for the experimental unitarity sum is
from Eq. (21), and � is a calculated correction due to the extra
Z boson. If we take the CKM matrix to be exactly unitary in
three generations, then Eq. (39) can be used to set the following
one-standard-deviation limits on �:

− 0.00056 � � � +0.00066. (40)

Marciano and Sirlin [212] have computed the contribution of
a putative Zχ boson to the radiative correction and obtained

� = − 27α

40π sin2 θW

× 4

3
|Cχ |2 ln xχ

xχ − 1
, (41)

where α is the fine-structure constant, θW is the Weinberg angle
(sin2 θW � 0.23), and Cχ is a coupling constant linking the Zχ

boson to fermions. The normalization has been selected so that
Cχ is unity at the SO(10) unification mass scale. Its value at
lower energies has to be estimated, and Marciano and Sirlin
use |Cχ |2 = 1

2 . Noting that the correction � is negative, we
obtain from the lower limit in Eq. (40)

ln xχ

xχ − 1
� 0.12. (42)

Taking mW = 81 GeV for the W -boson mass, we arrive at the
limit

mZχ
> 430 GeV. (43)

Impressive though this limit is, somewhat higher limits
have been obtained in direct searches at proton and electron
colliders. The CDF and D0 experiments at FermiLab in
searches of p̄p → e+e− have placed lower mass limits (at
95% C.L.) on mZχ

of 822 and 640 GeV, respectively, whereas
at CERN the LEP2 experiment on e+e− → f f̄ (with f

signifying a fermion) find a lower mass limit of 673 GeV. These
limits are recorded in the survey of Erler and Langacker [213]
in the 2008 PDG listings.
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V. CONCLUSIONS

In our previous survey [5], only four years ago, we
remarked on the excellent agreement among the derived F t

values, lamented that the results of the unitarity test were
still ambiguous, and predicted that the already well-measured
f t values of the “traditional nine” superallowed decays were
unlikely to be improved dramatically in the near future. Much
has happened since then, not all of it expected. Today, we can
say that the excellent F t value consistency remains—or, to
be more accurate, it has been restored after Penning-trap QEC

value measurements, nonexistant at the time of the last survey,
did in fact make important improvements (and changes) in
the known f t values, which in turn prompted improvements
(and changes) in the calculated isospin-symmetry-breaking
corrections. At the same time, the calculation of the nucleus-
independent radiative correction, �V

R , was improved, leading
to a more precise result for Vud , and the kaon-decay community
mounted a concerted effort, which led to a new and reliable
value for Vus . With these new results, and others, CKM
unitarity has now been tested to unprecedented precision . . .

and it has passed the test with flying colors.
Furthermore, we have demonstrated in Sec. IV how

powerful these improved results can be in setting limits on
new physics beyond the standard model, whether that new
physics be a scalar interaction, right-hand currents, or extra Z

bosons. We have seen that tiny uncertainties on the f t values
are essential ingredients of a demanding test of CKM unitarity,
which also leads to tight limits on new physics. The challenge
now is whether those uncertainties can be reduced still further?
The motivation is as strong as ever: to identify the need for
new physics—or to limit the possible candidate theories even
more definitively.

We have taken pains throughout this work to pay careful
attention to all uncertainties, both theoretical and experimental.
In Sec. IV A we detail the various contributions to the
uncertainty in |Vud |2. Of these, by far the largest is still from
�V

R , even though its uncertainty has recently been improved
significantly [6]. To improve it more must remain an important
theoretical goal.

The next largest contributor to the error budget for |Vud |2 is
the nuclear-structure-dependent corrections (δC − δNS). Their
uncertainties arise both from the input parameters used in their
calculation—two-body matrix elements in the shell-model
calculations, experimental uncertainties in charge-radii, etc.
[7,179]—and from possible systematic differences between
two different methods used for calculating radial wave
functions (see Sec. III C). From a theoretical point of view,
it would obviously be desirable to have a third completely
different calculation, to reinforce the assessment of systematic
uncertainties. However, in the absence of such a calculation,
one must rely on experiment to test the accuracy of these
calculated corrections. This has become, and should remain, a
top priority for experiment.

The method, which is best described with reference to
Fig. 9, is based on the validity of the CVC hypothesis
that the corrected F t values for the superallowed 0+ → 0+
decays should be constant. In the figure we compare the
uncorrected measured f t values (points and error bars) with

ft
(s

)
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14O

26mAl

34Cl 42Sc

46V

50Mn
54Co

Z of daughter

3020
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FIG. 9. Experimental f t values plotted as a function of the
charge on the daughter nucleus, Z. Both bands represent the quantity
F t/[(1 + δ′

R)(1 − δC + δNS)]. The two separate bands distinguish
those β emitters whose parent nuclei have isospin Tz = −1 (darker
shading) from those with Tz = 0 (lighter shading).

the quantity F t/[(1 + δ′
R)(1 − δC + δNS)] shown as a band,

the width of which represents the assigned theory error. The
band corresponds to the calculated corrections normalized
to the data via the measured average F t value, F t , taken
from Table IX. Thus, although this comparison does not test
the absolute values of the correction terms, it does test the
collective ability of all three calculated correction terms to
reproduce the significant variations in f t from one transition
to another. In fact, since δ′

R is almost independent of Z when
Z > 10, this test really probes directly the effectiveness of the
calculated values of (δC − δNS).

It can be seen that there is remarkable agreement between
theory and experiment. In assessing the significance of this
agreement, it is important to recognize that the calculations
of δC and δNS for Z � 26 are based on well-established shell-
model wave functions that were further tuned to reproduce
measured binding energies, charge radii, and coefficients of
the isobaric multiplet mass equation [7,179]. The origins
of the calculated correction terms for all cases are com-
pletely independent of the superallowed decay data. Thus, the
agreement in the figure between the measured superallowed
data points and the theoretical band is already a powerful
validation of the calculated corrections used in determining
that band. The validation becomes even more convincing
when we consider that it would require a pathological fault
indeed in the theory to allow the observed nucleus-to-nucleus
variations in δC and δNS to be reproduced in such detail
while failing to obtain the absolute values to comparable
precision. As satisfactory as the agreement in Fig. 9 is, though,
new experiments can still improve the test, making it even
more demanding, and can ultimately serve to reduce the un-
certainty in the nuclear-structure-dependent corrections even
further.
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These new experiments can follow different paths. In the
past four years, the biggest impact has come from experiments
that focused on the “traditional nine” superallowed transitions.
New Penning-trap QEC value measurements have already been
mentioned, but there have been new half-life and branching-
ratio measurements as well (see Tables III and IV). More
improvements are still possible, as a glance at Fig. 4 reveals.
If we accept as a goal that experiment should be more than a
factor of 2 more precise than theory, then we see that the QEC

values for 10C, 14O, and 34Cl, the half-lives of 26Alm,34Cl,
42Sc, and 50Mn, and the branching ratios for 10C and 14O can
all bear improvement. It is also particularly noteworthy that any
improvements in the cases of 10C and 14O will lead directly
to improvements in the limits on the possible existence of
scalar currents. As is evident from Fig. 7 and the discussion in
Sec. IV C1, it is on these two low-Z superallowed tran-
sitions that a scalar current would have the largest effect.
Unfortunately, the branching ratios for both these transitions
offer experimental obstacles that have proved very difficult to
surmount.

A second experimental path is to expand the number of
precisely measured superallowed emitters to include cases for
which the calculated nuclear-structure-dependent corrections
are larger, or show larger variations from nuclide to nuclide,
than the values applied to the “traditional nine” cases. We argue
that if the experimental f t values agree with the calculations
where the nucleus-to-nucleus variations are large, then that
must surely verify the calculations’ reliability for the nine cases
whose corrections are considerably smaller. Already four cases
of this type have been carefully measured: 22Mg, 34Ar, 62Ga,
and 74Rb. They appear to agree well with the calculations
although, with the exception of 62Ga, their uncertainties are
still five times greater than those for the best known transitions.
Undoubtedly, these uncertainties will be reduced and more
cases added in the near future.

These new cases certainly present serious experimental
challenges. The parent nuclei are more exotic than the
traditional cases, which all have stable daughters, so they are
more difficult to produce in pure and statistically significant
quantities. They also exhibit more complex branching patterns:
Each TZ = −1 parent nucleus decays by Gamow-Teller
transitions of comparable strength to the superallowed Fermi
one, thus requiring the latter’s branching ratio to be measured
directly with high precision. For the TZ = 0 parents with
A � 62, each decay includes numerous weak Gamow-Teller
transitions, which are very difficult to observe individually
but which collectively constitute nonnegligible branching
strength. In both regions, these problems are being, or have
been, overcome, albeit with very specialized techniques. The
recently published branching-ratio measurement [64] for 62Ga
is an example of how even meticulously detailed spectroscopic
studies must be combined with theory [88] to ensure that
missing transitions are properly accounted for in the decays of
the heavy TZ = 0 parents.

There is a further important issue that arises for the super-
allowed emitters with A � 62: The shell-model calculations
of the structure-dependent corrections for these nuclei are not
solidly based on spectroscopic measurements as they are for
the lighter nuclei. Such measurements simply do not exist

for most N � Z nuclei in this mass region. Furthermore,
charge radii and coefficients for the isobaric multiplet mass
equation are not known either and so cannot be used to
constrain the radial wave functions or “tune” the charge
dependence embedded in the two-body matrix elements. As
a consequence, the uncertainties assigned to the calculated
corrections are very large (see the broad band in this mass
region in Fig. 9), considerably reducing the usefulness of these
nuclei either in testing the corrections or in contributing to
the determination of Vud . It would be very valuable in this
context for radioactive-beam facilities to direct some attention
to determining a wide variety of spectroscopic information
in this mass region with a view to obtaining a reason-
ably effective nuclear model, which, among other things,
could lead to much improved calculations for the correction
terms.

In conclusion, we can assert—as we did four years ago—
that world data for superallowed 0+ → 0+ β decays strongly
support the CVC expectation of an unrenormalized vector
coupling constant and also set a tight limit, consistent with
zero, on scalar currents. We can now add, though, that CKM
unitarity is satisfied to within an uncertainty of 0.06%. This
reconciliation with unitarity has come about as a result of
significant changes in Vus ; The value of Vud determined
from nuclear β decay has not varied outside of error bars in
20 years, during which time the size of those error bars has
been reduced by a factor of 5. Finally, we have noted that the
calculated nuclear-structure-dependent correction terms have
recently been improved and continue to stand up favorably
to experimental tests, an outcome that must further increase
confidence in the nuclear results.
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APPENDIX A: ATOMIC OVERLAP CORRECTION TO THE
STATISTICAL RATE FUNCTION

The statistical rate function, f , is an integral over phase
space,

f =
∫ W0

1
pW (W0 − W )2F (Z,W )S(Z,W ) dW, (A1)

where W is the total energy of the electron in electron-rest-
mass units, W0 is the maximum value of W,p = (W 2 − 1)1/2

is the momentum of the electron, Z is the atomic number of the
daughter nucleus, F (Z,W ) is the Fermi function, and S(Z,W )
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is the shape-correction function. The details of the calculation
of S(Z,W ) were given in our previous survey [5] and will not
be repeated here. What we address here is the inclusion for
the first time of an additional factor in Eq. (A1) to account
for the mismatch in the initial and final atomic states in the
β decay. Since the nucleus changes charge by one unit in β

decay, the final atomic state does not overlap perfectly with
the initial atomic state, an effect that leads to a slight inhibition
in the β-decay rate. In the past, this effect has justifiably been
considered too small to be of practical concern but, with the
advent of Penning-trap mass measurements, the experimental
uncertainties in transition Q values have been reduced so much
that they are now comparable to the effects of the imperfect
atomic overlap.

We begin by writing

f =
∫ W0

1
pW (W0 − W )2F (Z,W )S(Z,W )r(Z,W ) dW,

(A2)

where r(Z,W ) is the atomic overlap correction we are seeking.
We then follow the method of Bahcall [214] by expressing f

as a double integral with an energy-conserving delta function:

f =
∫ ∫

pWq2F (Z,W )S(Z,W )

×
∑
A′

|〈A′|G〉|2δ(Ef − Ei) dW dq, (A3)

where q is the neutrino momentum. We have introduced into
this equation an overlap of the initial and final atomic electron
configurations: |G〉 is the state vector for the initial neutral
atom with (Z + 1) electrons, and |A′〉 is the state vector for
the final ionized atom with (Z + 1) electrons but only charge
Z in the nucleus. There are many such possible final states, so
a sum over A′ is included.

Of the two energies within the delta function, the first, Ei ,
is the energy of the initial neutral atom in its atomic ground
state:

Ei = MZ+1(G) = MZ+1 + (Z + 1)me − B(G), (A4)

where MZ+1(G) is the atomic mass, MZ+1 is the nuclear
mass, me is the electron mass (me = 1 in electron-rest-mass
units), and B(G) is the total electron binding energy in the
ground state of the atom. The sign of the latter is chosen so
that B(G) > 0. The second energy, Ef , is that of the final
state, which is composed of an ionized atom still with (Z + 1)
atomic electrons in an excited configuration plus an emitted
β-decay positron and an emitted neutrino:

Ef = M−1
Z+1(A′) + W + q = MZ + (Z + 1)me − B(A′)

+W + q, (A5)

where M−1
Z+1(A′) is the atomic mass of a negatively ionized

atom (with superscript −1 denoting ionization) of (Z + 1)
electrons in configuration A′,MZ is the nuclear mass for
the final nucleus in the β decay, and B(A′) is the total
electron binding energy for the ionized atom. Thus the energy

difference becomes

Ef − Ei = (MZ − MZ+1) + W + q + B(G) − B(A′)

= (MZ − MZ+1) + W + q + [B(G) − B(G′)]

− [B(A′) − B(G′)]. (A6)

In the second line of the equation we have introduced the total
electron binding energy for the final neutral atom of charge Z

in its atomic ground-state configuration, B(G′).
The QEC value is the difference in the atomic masses of

neutral atoms in ground-state configurations:

QEC = MZ+1(G) − MZ(G′)

= [MZ+1 + (Z + 1)me − B(G)] − [MZ + Zme − B(G′)]

= (MZ+1 − MZ) + me + [B(G′) − B(G)], (A7)

and the quantity W0 in Eq. (A1) is related to QEC by the
equation W0 = QEC − me. Thus, Ef − Ei in Eq. (A6) can be
written as

Ef − Ei = q + W − W0 + [B(G′) − B(A′)]. (A8)

For the energy-conserving delta function we now make a
Taylor series expansion about the value q + W − W0:

δ(Ef − Ei) = δ(q + W − W0) + δ′(q + W − W0)

× [B(G′) − B(A′)] + · · · . (A9)

If the first term in this expansion is inserted into the double inte-
gral, Eq. (A3), then the expression for f reduces to the original
form of Eq. (A1) since the atomic overlap factor is unity under
the assumption that the sum over electronic configurations
A′ can be completed by closure; that is,

∑
A′ |〈A′|G〉|2 =∑

A′ 〈G|A′〉〈A′|G〉 = 〈G|G〉 = 1. The second term in Eq. (A9)
involves a derivative of a delta function. This is handled by
an integration by parts, in which the rest of the integrand is
differentiated with respect to q. No boundary terms survive
as the integrand vanishes at the boundaries. Thus the atomic
overlap correction becomes

r(Z,W ) = 1 − 2

W0 − W

∑
A′

|〈A′|G〉|2[B(G′) − B(A′)]

= 1 − 2

W0 − W

(
B(G′) −

∑
A′

|〈A′|G〉|2B(A′)

)
.

(A10)

Next, it is useful to recall the eigenvalue equations satisfied
by the atomic states |G〉 and |A′〉:

Ĥi |G〉 = −B(G)|G〉 with
(A11)

Ĥi =
Z+1∑
i=1

ti − (Z + 1)e2
Z+1∑
i=1

1

ri

+ e2
Z+1∑

i<j=1

1

rij

,

Ĥ−1
f |A′〉 = −B(A′)|A′〉 with

(A12)

Ĥ−1
f =

Z+1∑
i=1

ti − Ze2
Z+1∑
i=1

1

ri

+ e2
Z+1∑

i<j=1

1

rij

,
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TABLE X. Comparison of statistical rate functions calculated without the atomic overlap correction,
fwithout, to those calculated with it included, fwith. The change in the QEC value that would lead to the
same change in f is given in the last column.

Parent fwithout fwith df/f (%) dQ/Q (%) dQ (eV)

Tz = −1
10C 2.30089 2.30039 0.02178 0.00436 83
14O 42.7779 42.7724 0.01277 0.00255 72
18Ne 134.484 134.469 0.01093 0.00219 74
22Mg 418.423 418.386 0.00877 0.00175 72
26Si 1029.52 1029.44 0.00767 0.00153 74
30S 1967.05 1966.91 0.00707 0.00141 77
34Ar 3414.68 3414.46 0.00647 0.00129 78
38Ca 5327.57 5327.24 0.00612 0.00122 81
42Ti 7040.63 7040.21 0.00597 0.00119 84

Tz = 0
26Alm 478.279 478.237 0.00880 0.00176 75
34Cl 1996.10 1995.96 0.00711 0.00142 78
38Km 3298.10 3297.88 0.00663 0.00133 80
42Sc 4472.52 4472.24 0.00643 0.00129 83
46V 7209.90 7209.47 0.00598 0.00120 84
50Mn 10746.6 10746.0 0.00565 0.00113 86
54Co 15767.5 15766.6 0.00537 0.00107 89
62Ga 26401.6 26400.2 0.00557 0.00111 102
66As 32127.0 32125.3 0.00545 0.00109 104
70Br 38602.2 38600.1 0.00539 0.00108 107
74Rb 47296.9 47294.5 0.00523 0.00105 109

where ti is the kinetic energy of electron i, ri is its distance
from the nucleus, and rij is the separation of electrons i and j .
Note, in particular, that

Ĥi − Ĥ−1
f = −e2

Z+1∑
i=1

1

ri

� ∂

∂Z
Ĥi. (A13)

Inserting these Hamiltonian expressions into Eq. (A10) we
obtain

r(Z,W ) = 1 − 2

W0 − W

(
B(G′) +

∑
A′

〈G|Ĥ−1
f |A′〉〈A′|G〉

)

= 1 − 2

W0 − W

(
B(G′) + 〈G|Ĥ−1

f |G〉)
= 1 − 2

W0 − W

(
B(G′) − 〈G|Ĥi − Ĥ−1

f |G〉

+ 〈G|Ĥi |G〉)
= 1 − 2

W0 − W

(
B(G′) + ∂

∂Z
B(G) − B(G)

)
,

(A14)

where in the last line the order of integration and differentiation
has been reversed on the assumption that the binding energy
as a function of Z behaves in a smooth way. Now, B(G′) is the
electronic binding energy of a neutral atom with Z electrons,
whereas B(G) is the same quantity for an atom with Z + 1
electrons. Treating B(G′) as a function of Z, we can expand

B(G′) in a Taylor series about B(G):

B(G′) = B(G) − ∂

∂Z
B(G) + 1

2

∂2

∂Z2
B(G) − · · · . (A15)

Then, substituting this expression in Eq. (A14), we obtain our
final expression for the atomic overlap correction:

r(Z,W ) = 1 − 1

W0 − W

∂2

∂Z2
B(G). (A16)

This expression was first obtained by Bahcall [214].
It remains for us to estimate the second derivative of the

electronic binding energy of neutral atoms in their ground-state
configuration. For this we use binding-energy values from
the tables of Carlson et al. [215], which were obtained
from self-consistent Hartree-Fock calculations and have been
demonstrated to agree with experimental values to within 5%.
We performed a fit to these tabulated values using a fitting
function, aZb, in three ranges of Z values, with the following
results:

B(G) =
13.080Z2.42

i eV, 6 � Zi � 10,

14.945Z2.37
i eV, 11 � Zi � 30,

11.435Z2.45
i eV, 31 � Zi � 39,

(A17)

where Zi is the charge of the parent atom in the β-decay
process. It is conventional to use Z as the charge of the daughter
nucleus in β decay; thus for positron decay Zi = Z + 1. The
second derivative is easily obtained from these expressions.

We have recomputed the statistical rate function f , with the
results being listed in Table X. Those results obtained without
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the atomic overlap correction, Eq. (A1), are given under the
heading fwithout, whereas those with the correction, Eqs. (A2)
and (A16), are labeled fwith. The latter results also appear
in column 2 of Table IX. The fractional difference between
fwith and fwithout in percent is given in column 4 and is of
order 0.01%, decreasing with increasing mass value. This is a
very small correction. Furthermore, the statistical rate function
depends on the Q value to the fifth power, so the fractional
change in Q that would lead to a change in f of the same size as
that induced by the atomic overlap correction is even smaller:
1/5 × df/f . This percentage change is given in column 5 of
Table X. As small as this effect is, it can be seen from the
last column of the table that the equivalent change in Q value
ranges from 70 to 110 eV, an amount that is similar to the
experimental uncertainties on the most precisely measured Q

values.

APPENDIX B: ACCOUNTING FOR SYSTEMATIC ERRORS

1. Isospin-symmetry-breaking correction, δC2

In the past (see, for example, Ref. [5]), we have added
a systematic uncertainty to the average corrected F t value
to account for an apparent systematic difference between
calculations of the isospin-symmetry-breaking correction, δC2,
that used, on the one hand, Saxon-Woods eigenfunctions and,
on the other hand, Hartree-Fock eigenfunctions. The former
method, which was the one used by us [7,178,179], gave
consistently larger corrections than the latter method, which
was used by Ormand and Brown [181–183]. This was deemed
to be a systematic effect caused by the different shapes of
the Saxon-Woods and Hartree-Fock mean-field potentials. In
this section, we readdress this issue for two reasons: (1) the
Hartree-Fock calculations of Ormand and Brown are now
14–24 years old and are not available for all the nuclei under
study here and (2) our most recent Saxon-Woods calculations
[7] were performed in larger shell-model spaces not matched
by the Hartree-Fock calculations. For a valid comparison both
sets of calculations should be done in identical shell-model
spaces.

The isospin-symmetry-breaking correction, δC2, for a su-
perallowed β transition between 0+, T = 1 analog states in
nuclei with A nucleons is computed from the formula [7]

δC2 �
∑
π<,α

S<
α �<

α − 1

2

∑
π>,α

S>
α �>

α . (B1)

Here Sα is the spectroscopic factor for the pickup of a nucleon
in quantum state α from an A-particle state of spin 0+ and
isospin 1 to an (A − 1)-particle state of spin α and isospin Tπ .
There is a complete-set sum over all the (A − 1)-particle states
(called parent states and denoted π ) in Eq. (B1). The sum is
divided into two parts: The first is over states with isospin
Tπ = 1/2 and is denoted by π<; the second is over states with
Tπ = 3/2, denoted π>. Further, the �π

α are radial-mismatch
factors, which depend on the difference between the radial
wave function of a proton bound in the decaying nucleus,
uπ

p,α(r), and that of a neutron bound in the daughter nucleus,

uπ
n,α(r). Specifically, the radial-mismatch factors are given by

�π
α =

∫ ∞

0
uπ

n,α(r)
[
uπ

n,α(r) − uπ
p,α(r)

]
dr

= 1 −
∫ ∞

0
uπ

n,α(r)uπ
p,α(r) dr. (B2)

The radial functions are normalized to
∫ |u(r)|2 dr = 1. They

are labeled by the parent state π because their asymptotic
forms are matched to their separation energies, which in turn
depend on the parent state. For example, if the parent state is the
ground state of the (A − 1) system, then the proton separation
energy would be Sp and the neutron separation energy Sn, two
quantities given in terms of atomic masses and found in any
atomic mass table. If, however, π represents an excited state
of the (A − 1) system, then the proton and neutron separation
energies would be Sp + Ex and Sn + Ex , respectively, where
Ex is the excitation energy of that parent state.

To compute δC2 from Eq. (B1) one needs a set of spec-
troscopic factors, Sα , and a set of radial-mismatch integrals,
�α . The difference between Saxon-Woods and Hartree-Fock
calculations lies in the method used to evaluate the radial-
overlap integrals. In one case, the radial functions u(r) are
taken to be eigenfunctions of a Saxon-Woods potential; in
the other case they are eigenfunctions of a Hartree-Fock
mean-field potential. However, for a valid comparison between
them the δC2 must be calculated for both with the same
spectroscopic factors, Sα . This was not done in the past, it being
assumed that the model spaces were sufficiently comparable
that this would not lead to any serious error. However, our
most recent Saxon-Woods calculation [7] have significantly
increased the model spaces over the ones used before, so now it
is essential that a new Hartree-Fock calculation be undertaken.
We report such a calculation here.

To be clear about the procedure, we illustrate it for the
specific case of the decay of 34Cl to 34S. The decaying nucleus
has Z + 1 = 17 protons; the daughter nucleus has Z = 16
protons. In the Saxon-Woods approach, the proton radial wave
functions are taken to be eigenfunctions of a potential defined
for a nucleus of mass A and charge Z + 1 as follows:

V (r) = −V0f (r) − Vsg(r)l.σ + VC(r), (B3)

where

f (r) = {1 + exp[(r − R)/a])}−1 ,

g(r) =
(

h̄

mπc

)2 1

asr
exp

(
r − Rs

as

)

×
{

1 + exp

(
r − Rs

as

)}−2

,

VC(r) = Ze2/r, for r � Rc

= Ze2

2Rc

(
3 − r2

R2
c

)
, for r < Rc. (B4)

Here, R = r0(A − 1)1/3 and Rs = rs(A − 1)1/3. The three
terms in Eq. (B3) are the central, spin-orbit, and Coulomb
terms, respectively. In our calculations [7] most of the
parameters were fixed at standard values, with the well depth
V0 being adjusted case by case so that the binding energy
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of the eigenfunction being computed matched the separation
energy to the corresponding parent state—in 33S, for our
example. Likewise the neutron radial functions were taken to
be eigenfunctions of a similar potential but with the Coulomb
term omitted.

Although the Hartree-Fock procedure is comparable, there
is one issue unique to this approach that requires particular
attention. For our illustrative example, a Hartree-Fock calcu-
lation might first be mounted for 34Cl, which would yield
a mean field with central, spin-orbit, and Coulomb terms.
The required proton radial functions would then be taken
as eigenfunctions of this mean field with the strength of the
central term readjusted case by case so that the computed
binding energy matched the appropriate separation energy. A
second Hartree-Fock calculation might then be mounted for
34S, from which the neutron radial functions would be similarly
determined in the mean field, but without the Coulomb
term. However, under these circumstances, if the Coulomb
terms in the Hartree-Fock mean-field potential were to be
compared with those in the Saxon-Woods potential, a very
significant difference would emerge. In the Hartree-Fock case,
the Coulomb term is

VC(r) =
∫

d3r′ e2

|r − r′|ρp(r′) − 3e2

2

[
3

π
ρp(r)

]1/3

, (B5)

which depends on the proton density (of 34Cl in our example)
that is generated as part of the Hartree-Fock procedure. The
two terms in Eq. (B5) are called the direct and exchange terms,
respectively. If we take the asymptotic limit of the direct term
for large r , we obtain

V dir
C (r) =

∫
d3r′ e2

|r − r′|ρp(r′)
r→∞−→ e2

r

∫
d3r′ρp(r′)

= (Z + 1)e2

r
. (B6)

Since the Hartree-Fock proton density is normalized to
(Z + 1) protons in 34Cl, the asymptotic form of the Coulomb
potential tends to (Z + 1)e2/r . However, this disagrees with
the equivalent Saxon-Woods calculation, which has the form
Ze2/r [see Eq. (B4)].

This discrepancy is important and constitutes, in our
opinion, a serious flaw in this Hartree-Fock calculation of
the radial-mismatch factor. Since a proton removed from
a nucleus of charge Z + 1 leaves behind Z protons, its
asymptotic interaction is with charge Z—as described by
the Saxon-Woods potential—and not with charge Z + 1. This
deficiency in Hartree-Fock would be overcome in principle
by the Coulomb exchange term. However, in Skyrme-Hartree-
Fock calculations it is not possible to compute the exchange
term exactly without sacrificing the simplicities that come with
use of zero-range Skyrme interactions. The exchange term
appearing in Eq. (B5) is a commonly used local approximation,
which might well be appropriate for the nuclear interior and
for the computation of bulk properties such as binding energies
and radii, but it certainly does not do the job asymptotically,
which is the region of greatest importance to our calculations.

To circumvent this difficulty, we have chosen to alter the
Hartree-Fock protocol. Instead of mounting two Hartree-Fock

calculations—for 34Cl and 34S—as just described, we mount
a single calculation for the nucleus with (A − 1) nucleons
and Z protons—33S in our example. We then use the proton
mean field from this calculation to generate the proton eigen-
functions uπ

p,α(r), and the neutron mean field from the same
calculation to generate the neutron eigenfunctions uπ

n,α(r). In
this procedure, the Coulomb interaction automatically has
the correct asymptotic form. It is also fully consistent with
the Saxon-Woods potential parametrization, Eq. (B4), which
considers the nucleus of mass (A − 1) as the core to which
the last particle is bound, since the radius of the potential is
parametrized as r0(A − 1)1/3 rather than r0A

1/3. Calculations
of δC2 with this new Hartree-Fock protocol will be presented
in the next section. It can be noted here, however, that these
results are larger than those obtained with the conventional
protocol by between 10% to 40% depending on the Skyrme
interaction used and the nucleus under study. This change of
protocol goes a long way in reducing the systematic error
between Saxon-Woods and Hartree-Fock calculations.

2. New Hartree-Fock calculations for δC2

Here we present our new Hartree-Fock calculations for
the isospin-symmetry-breaking correction, δC2, for the 20
cases of superallowed Fermi β decay considered in our
survey: they range from 10C to 74Rb. Our procedure was
that discussed at the end of the previous section and involved
obtaining the mean field from a Hartree-Fock calculation in
the (A − 1) system. The proton and neutron radial functions

TABLE XI. Adopted isospin-symmetry-breaking
corrections, δC2 in percent units, and their assigned
uncertainties obtained from Hartree-Fock calculations.
Also listed are earlier results obtained with Saxon-
Woods (SW) eigenfunctions, as published in Ref. [7].

Nucleus HF SW

Tz = −1
10C 0.215(35) 0.165(15)
14O 0.255(30) 0.275(15)
18Ne 0.205(55) 0.410(25)
22Mg 0.250(55) 0.370(20)
26Si 0.335(55) 0.405(25)
30S 0.540(55) 0.700(20)
34Ar 0.510(60) 0.635(55)
38Ca 0.600(60) 0.745(70)
42Ti 0.535(60) 0.835(75)
Tz = 0
26Al 0.410(50) 0.280(15)
34Cl 0.595(55) 0.550(45)
38K 0.640(60) 0.550(55)
42Sc 0.620(55) 0.645(55)
46V 0.525(55) 0.545(55)
50Mn 0.575(55) 0.610(50)
54Co 0.635(55) 0.720(60)
62Ga 0.93(16) 1.20(20)
66As 1.10(35) 1.35(40)
70Br 1.14(25) 1.25(25)
74Rb 1.29(16) 1.50(30)
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were obtained as eigenfunctions of this mean-field potential,
whose overall strength was scaled on a case-by-case basis to
ensure the eigenfunction’s asymptotic solution matched the
required separation energy. These eigenfunctions were used
to compute the radial-mismatch factors, �π

α , of Eq. (B2).
For the spectroscopic factors needed in Eq. (B1), we ran
several shell-model calculations with the model spaces and
effective interactions used recently [7] in calculations with
Saxon-Woods potentials. We also considered three choices
of the Skyrme interaction: SGII [216], SkM∗ [217], and
Ska [218]. The first two of these interactions were the ones
used by Ormand and Brown [182,183] in their computations
of δC2. The third interaction, Ska, is of similar quality and
was one of the first to be fitted to the incompressibility of
nuclear matter, a key constraint used in all later Skyrme

interactions. More recent Skyrme interactions tend to be used
in conjunction with pairing forces in Hartree-Fock-Boglioubov
calculations [219–221]. Since we have not included pairing
forces in the present work, we have not attempted to use any
of these more recent interactions.

The results from our Hartree-Fock calculations for δC2

are listed in column 2 of Table XI. For each transition, the
central value is an average of the results obtained with the
three choices of Skyrme interactions. To assign an uncertainty,
we have examined the spread in results obtained with the
different Skyrme interactions and with different shell-model
effective interactions and model spaces. We also list in the
third column of the table the values we adopted from our
Saxon-Woods computations, which originally appeared in
Ref. [7].
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