75 research outputs found
Economics methods in Cochrane systematic reviews of health promotion and public health related interventions.
Peer reviewedPublisher PD
Use of the analysis of the volatile faecal metabolome in screening for colorectal cancer
Diagnosis of colorectal cancer is an invasive and expensive colonoscopy, which is usually carried out after a positive screening test. Unfortunately, existing screening tests lack specificity and sensitivity, hence many unnecessary colonoscopies are performed. Here we report on a potential new screening test for colorectal cancer based on the analysis of volatile organic compounds (VOCs) in the headspace of faecal samples. Faecal samples were obtained from subjects who had a positive faecal occult blood sample (FOBT). Subjects subsequently had colonoscopies performed to classify them into low risk (non-cancer) and high risk (colorectal cancer) groups. Volatile organic compounds were analysed by selected ion flow tube mass spectrometry (SIFT-MS) and then data were analysed using both univariate and multivariate statistical methods. Ions most likely from hydrogen sulphide, dimethyl sulphide and dimethyl disulphide are statistically significantly higher in samples from high risk rather than low risk subjects. Results using multivariate methods show that the test gives a correct classification of 75% with 78% specificity and 72% sensitivity on FOBT positive samples, offering a potentially effective alternative to FOBT
Understanding the benefit of metformin use in cancer treatment
Biguanides have been developed for the treatment of hyperglycemia and type 2 diabetes. Recently, metformin, the most widely prescribed biguanide, has emerged as a potential anticancer agent. Epidemiological, preclinical and clinical evidence supports the use of metformin as a cancer therapeutic. The ability of metformin to lower circulating insulin may be particularly important for the treatment of cancers known to be associated with hyperinsulinemia, such as those of the breast and colon. Moreover, metformin may exhibit direct inhibitory effects on cancer cells by inhibiting mammalian target of rapamycin (mTOR) signaling and protein synthesis. The evidence supporting a role for metformin in cancer therapy and its potential molecular mechanisms of action are discussed
Test performance of faecal occult blood testing for the detection of bowel cancer in people with chronic kidney disease (DETECT) protocol
<p>Abstract</p> <p>Background</p> <p>Cancer is a major cause of mortality and morbidity in patients with chronic kidney disease (CKD). In patients without kidney disease, screening is a major strategy for reducing the risk of cancer and improving the health outcomes for those who developed cancers by detecting treatable cancers at an early stage. Among those with CKD, the effectiveness, the efficacy and patients' preferences for cancer screening are unknown.</p> <p>Methods/Design</p> <p>This work describes the protocol for the DETECT study examining the effectiveness, efficiency and patient's perspectives of colorectal cancer screening using immunochemical faecal occult blood testing (iFOBT) for people with CKD. The aims of the DETECT study are 1) to determine the test performance characteristics of iFOBT screening in individuals with CKD, 2) to estimate the incremental costs and health benefits of iFOBT screening in CKD compared to no screening and 3) to elicit patients' perspective for colorectal cancer screening in the CKD population. Three different study designs will be used to explore the uncertainties surrounding colorectal cancer screening in CKD. A diagnostic test accuracy study of iFOBT screening will be conducted across all stages of CKD in patients ages 35-70. Using individually collected direct healthcare costs and outcomes from the diagnostic test accuracy study, cost-utility and cost-effective analyses will be performed to estimate the costs and health benefits of iFOBT screening in CKD. Qualitative in-depth interviews will be undertaken in a subset of participants from the diagnostic test accuracy study to investigate the perspectives, experiences, attitudes and beliefs about colorectal cancer screening among individuals with CKD.</p> <p>Discussion</p> <p>The DETECT study will target the three major unknowns about early cancer detection in CKD. Findings from our study will provide accurate and definitive estimates of screening efficacy and efficiency for colorectal cancer, and will allow better service planning and budgeting for early cancer detection in this at-risk population.</p> <p>The DETECT study is also registered with the Australia New Zealand Clinical Trials Registry <a href="http://www.anzctr.org.au/ACTRN12611000538943.aspx">ACTRN12611000538943</a></p
Lactate Produced by Glycogenolysis in Astrocytes Regulates Memory Processing
When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions
- β¦