229 research outputs found

    Hunting for CDF Multi-Muon "Ghost" Events at Collider and Fixed-Target Experiments

    Full text link
    In 2008 the CDF collaboration discovered a large excess of events containing two or more muons, at least one of which seemed to have been produced outside the beam pipe. We investigate whether similar "ghost" events could (and should) have been seen in already completed experiments. The CDF di-muon data can be reproduced by a simple model where a relatively light X particle undergoes four-body decay. This model predicts a large number of ghost events in Fermilab fixed-target experiments E772, E789 and E866, applying the cuts optimized for analyses of Drell-Yan events. A correct description of events with more than two muons requires a more complicated model, where two X particles are produced from a very broad resonance Y. This model can be tested in fixed-target experiments only if the cut on the angles, or rapidities, of the muons can be relaxed. Either way, the UA1 experiment at the CERN ppbar collider should have observed O(100) ghost events.Comment: 15 pages, 9 figure

    Principle of Balance and the Sea Content of the Proton

    Full text link
    In this study, the proton is taken as an ensemble of quark-gluon Fock states. Using the principle of balance that every Fock state should be balanced with all of the nearby Fock states (denoted as the balance model), instead of the principle of detailed balance that any two nearby Fock states should be balanced with each other (denoted as the detailed balance model), the probabilities of finding every Fock state of the proton are obtained. The balance model can be taken as a revised version of the detailed balance model, which can give an excellent description of the light flavor sea asymmetry (i.e., uˉdˉ\bar{u}\not= \bar{d}) without any parameter. In case of gggg\Leftrightarrow gg sub-processes not considered, the balance model and the detailed balance model give the same results. In case of gggg\Leftrightarrow gg sub-processes considered, there is about 10 percent difference between the results of these models. We also calculate the strange content of the proton using the balance model under the equal probability assumption.Comment: 32 latex pages, 4 ps figures, to appear in PR

    Dynamical parton distributions of the nucleon and very small-x physics

    Full text link
    Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and high-E_{T} jet production we determine the dynamical parton distributions of the nucleon generated radiatively from valence-like positive input distributions at optimally chosen low resolution scales. These are compared with `standard' distributions generated from positive input distributions at some fixed and higher resolution scale. It is shown that up to the next to leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper, the uncertainties of the dynamical distributions are, as expected, smaller than those of their standard counterparts. This holds true in particular in the presently unexplored extremely small-x region relevant for evaluating ultrahigh energy cross sections in astrophysical applications. It is noted that our new dynamical distributions are compatible, within the presently determined uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.

    Non-perturbative structure of the polarized nucleon sea

    Full text link
    We investigate the flavour and quark-antiquark structure of the polarized nucleon by calculating the parton distribution functions of the nucleon sea using the meson cloud model. We find that the SU(2) flavor symmetry in the light antiquark sea and quark-antiquark symmetry in the strange quark sea are broken, {\it i.e.} \Delta\ubar < \Delta \dbar and \Delta s < \Delta \sbar. The polarization of the strange sea is found to be positive, which is in contradiction to previous analyses. We predict a much larger quark-antiquark asymmetry in the polarized strange quark sea than that in the unpolarized strange quark sea. Our results for both polarized light quark sea and polarized strange quark sea are consistent with the recent HERMES data.Comment: RevTex, 17 pages plus 8 PS figure

    Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions

    Full text link
    We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to the values of the charm- and bottom-quark masses, and we provide additional public PDF sets for a wide range of these heavy-quark masses. We quantify the impact of varying m_c and m_b on the cross sections for W, Z and Higgs production at the Tevatron and the LHC. We generate 3- and 4-flavour versions of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and alpha_S determined from fits in the 5-flavour scheme, including the eigenvector PDF sets necessary for calculation of PDF uncertainties. As an example of their use, we study the difference in the Z total cross sections at the Tevatron and LHC in the 4- and 5-flavour schemes. Significant differences are found, illustrating the need to resum large logarithms in Q^2/m_b^2 by using the 5-flavour scheme. The 4-flavour scheme is still necessary, however, if cuts are imposed on associated (massive) b-quarks, as is the case for the experimental measurement of Z b bbar production and similar processes.Comment: 40 pages, 11 figures. Grids can be found at http://projects.hepforge.org/mstwpdf/ and in LHAPDF V5.8.4. v2: version published in EPJ

    Octet magnetic moments and the Coleman-Glashow sum rule violation in the chiral quark model

    Full text link
    Baryon octet magnetic moments when calculated within the chiral quark model, incorporating the orbital angular momentum as well as the quark sea contribution through the Cheng-Li mechanism, not only show improvement over the non relativistic quark model results but also gives a non zero value for the right hand side of Coleman-Glashow sum rule. When effects due to spin-spin forces between constituent quarks as well as `mass adjustments' due to confinement are added, it leads to an excellent fit for the case of p, \Sigma^+, \Xi^o and violation of Coleman-Glashow sum rule, whereas in almost all the other cases the results are within 5% of the data.Comment: 5 RevTeX pages, accepted for publication in PRD(Rapid Communication

    SU(4) Chiral Quark Model with Configuration Mixing

    Full text link
    Chiral quark model with configuration mixing and broken SU(3)\times U(1) symmetry has been extended to include the contribution from c\bar c fluctuations by considering broken SU(4) instead of SU(3). The implications of such a model have been studied for quark flavor and spin distribution functions corresponding to E866 and the NMC data. The predicted parameters regarding the charm spin distribution functions, for example, \Delta c, \frac{\Delta c}{{\Delta \Sigma}}, \frac{\Delta c}{c} as well as the charm quark distribution functions, for example, \bar c, \frac{2\bar c}{(\bar u+\bar d)}, \frac{2 \bar c}{(u+d)} and \frac{(c+ \bar c)}{\sum (q+\bar q)} are in agreement with other similar calculations. Specifically, we find \Delta c=-0.009, \frac{\Delta c}{{\Delta \Sigma}}=-0.02, \bar c=0.03 and \frac{(c+ \bar c)}{\sum (q+\bar q)}=0.02 for the \chiQM parameters a=0.1, \alpha=0.4, \beta=0.7, \zeta_{E866}=-1-2 \beta, \zeta_{NMC}=-2-2 \beta and \gamma=0.3, the latter appears due to the extension of SU(3) to SU(4).Comment: 10 RevTeX pages. Accepted for publication in Phys. Rev.

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding
    corecore