1,789 research outputs found

    Competing Jahn Teller distortions and ferrimagnetic ordering in the geometrically frustrated system Ni1 xCuxCr2O4

    Get PDF
    Competing Jahn Teller distortions combined with geometrical frustration give rise to a rich phase diagram as a function of x Cu and temperature in the spinel system Ni1 xCuxCr2O4. The Jahn Teller distortion of the end members acts in opposite ways, with an elongation of the NiO4 tetrahedra resulting in a structural transition at TS1 317K in NiCr2O4, but a flattening in the CuO4 tetrahedra at TS1 846K in CuCr2O4. In both cases the symmetry is lowered from cubic Fd 3m to tetragonal I41 amd on cooling. In order to follow the influence of Jahn Teller active Ni2 and Cu2 ions on the structural and magnetic properties of chromium spinels, we have investigated a series of samples of Ni1 xCuxCr2O4 by x ray and neutron powder diffraction. In the critical range 0.10 lt; x Cu lt; 0.20, strong orthorhombic distortions were observed, where competing Jahn Teller activities between the Cu2 and Ni2 ions result in distortions along both the a and c axes. For Ni0.85Cu0.15Cr2O4, the orthorhombic structure Fddd is stabilized up to TS2 368 2 K, close to the first structural phase transition at TS1 374 2 K. A ferrimagnetic spin alignment of the Ni Cu and chromium atoms sets in at much lower temperature TC 95K in this compound. The end members NiCr2O4 and CuCr2O4 undergo this ferrimagnetic transition at TC 74 and 135 K, respectively. These transitions are accompanied by the structural change to the orthorhombic symmetry which relieves the frustration. NiCr2O4 and Ni0.85Cu0.15Cr2O4 undergo a second magnetic transition at TM2 24 and 67K due to a superimposed antiferromagnetic ordering of the Cr moments resulting in a noncollinear magnetic structure. In the system Ni1 xCuxCr2O4, the magnetic transitions TC and TM2 merge with increasing copper content up to x Cu similar to 0.5. For the Ni rich chromites, geometrical frustration causes a strong reduction of the chromium moments, where magnetic long range order coexists with a disordered spin liquid like or a reentrant spin glass like state. This paper provides insight into the interplay between the Jahn Teller effect, geometrical frustration, and long range magnetic order in these complex system

    Spin waves in ultrathin ferromagnetic overlayers

    Full text link
    The influence of a non-magnetic metallic substrate on the spin wave excitations in ultrathin ferromagnetic overlayers is investigated for different crystalline orientations. We show that spin wave dumping in these systems occur due to the tunneling of holes from the substrate into the overlayer, and that the spin wave energies may be considerably affected by the exchange coupling mediated by the substrate.Comment: RevTeX 4, 7 pages, 5 figures; submitted to Phys. Rev.

    Palaeoenvironment of Eocene prodelta in Spitsbergen recorded by the trace fossil Phycosiphon incertum

    Get PDF
    Ichnological, sedimentological and geochemical analyses were conducted on the Eocene Frysjaodden Formation in order to interpret palaeoenvironment prodelta sediments in the Central Basin of Spitsbergen. Phycosiphon incertum is the exclusive ichnotaxon showing differences in size, distribution, abundance and density, and relation to laminated/bioturbated intervals. Large P. incertum mainly occur dispersed, isolated and randomly distributed throughout the weakly laminated/non-laminated intervals. Small P. incertum occur occasionally in patches of several burrows within laminated intervals or as densely packed burrows in thin horizons in laminated intervals or constituting fully bioturbated intervals that are several centimetres thick. Ichnological changes are mainly controlled by oxygenation, although the availability of benthic food cannot be discarded. Changes in oxygenation and rate of sedimentation can be correlated with the registered variations in the Bouma sequence of the distal turbiditic beds within prodeltal shelf sediments.Funding for this research was provided by Project CGL2012-33281 (SecretarĂ­a de Estado de InvestigaciĂłn, Desarrollo e InnovaciĂłn, Spain), Project RYC-2009-04316 (RamĂłn y Cajal Programme) and Projects RNM-3715 and RNM-7408 and Research Group RNM-178 (Junta de AndalucĂ­a). The authors benefited from a bilateral agreement between the universities of Granada and Oslo, supported by the University of Granada

    Evaluation of two MM5-PBL parameterizations for solar radiation and temperature estimation in the South-Eastern area of the Iberian Peninsula

    Get PDF
    We study the relative performance of two different MM5-PBL parameterizations (Blackadar and MRF) simulating hourly values of solar irradiance and temperature in the south-eastern part of the Iberian Peninsula. The evaluation was carried out throughout the different seasons of the year 2005 and for three different sky conditions: clear-sky, broken-clouds and overcast conditions. Two integrations, one per PBL parameterization, were carried out for every sky condition and season of the year and results were compared with observational data. Overall, the MM5 model, both using the Blackadar or MRF PBL parameterization, revealed to be a valid tool to estimate hourly values of solar radiation and temperature over the study area. The influence of the PBL parameterization on the model estimates was found to be more important for the solar radiation than for the temperature and highly dependent on the season and sky conditions. Particularly, a detailed analysis revealed that, during broken-clouds conditions, the ability of the model to reproduce hourly changes in the solar radiation strongly depends upon the selected PBL parameterization. Additionally, it was found that solar radiation RMSE values are about one order of magnitude higher during broken-clouds and overcast conditions compared to clear-sky conditions. For the temperature, the two PBL parameterizations provide very similar estimates. Only under overcast conditions and during the autumn, the MRF provides significantly better estimates

    The electrical double layer for a fully asymmetric electrolyte around a spherical colloid: an integral equation study

    Full text link
    The hypernetted chain/mean spherical approximation (HNC/MSA) integral equation is obtained and solved numerically for a totally asymmetric primitive model electrolyte around a spherical macroparticle. The ensuing radial distribution functions show a very good agreement when compared to our Monte Carlo and molecular dynamics simulations for spherical geometry and with respect to previous anisotropic reference HNC calculations in the planar limit. We report an analysis of the potential vs charge relationship, radial distribution functions, mean electrostatic potential and cumulative reduced charge for representative cases of 1:1 and 2:2 salts with a size asymmetry ratio of 2. Our results are collated with those of the Modified Gouy-Chapman (MGC) and unequal radius Modified Gouy-Chapman (URMGC) theories and with those of HNC/MSA in the restricted primitive model (RPM) to assess the importance of size asymmetry effects. One of the most striking characteristics found is that,\textit{contrary to the general belief}, away from the point of zero charge the properties of an asymmetric electrical double layer (EDL) are not those corresponding to a symmetric electrolyte with the size and charge of the counterion, i.e. \textit{counterions do not always dominate}. This behavior suggests the existence of a new phenomenology in the EDL that genuinely belongs to a more realistic size-asymmetric model where steric correlations are taken into account consistently. Such novel features can not be described by traditional mean field theories like MGC, URMGC or even by enhanced formalisms, like HNC/MSA, if they are based on the RPM.Comment: 29 pages, 13 figure

    The Control System for the Cryogenics in the LHC Tunnel [First Experience and Improvements]

    Get PDF
    The Large Hadron Collider (LHC) was commissioned at CERN and started operation with beams in 2008. Several months of operation in nominal cryogenic conditions have triggered an optimisation of the process functional analysis. This lead to a few revisions of the control logic, which were realised on-the-fly. During the 2008-09 shut-down, and in order to enhance the safety, availability and operability of the LHC cryogenics, a major rebuild of the logic and several hardware modifications were implemented. The databases, containing instruments and controls in-formation, are being rationalized; the automatic tool, that extracts data for the control software, is being simplified. This paper describes the main improvements and sug-gests perspectives of further developments

    Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    Get PDF
    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS proposes the concept of Virtual Infrastructures over one or more interconnected Physical Infrastructures comprising both network and IT resources. Taking into consideration the energy consumption levels associated with the ICT today and the expansion of the Internet in size and complexity, that incurring increased energy consumption of both IT and network resources, energy efficient infrastructure design becomes critical. To address this need, in the framework of GEYSERS, we propose energy efficient design of infrastructures incorporating integrated optical network and IT resources, supporting resilient end-to-end services. Our modeling results quantify significant energy savings of the proposed solution by jointly optimizing the allocation of both network and IT resources
    • 

    corecore