219 research outputs found

    Statistical mechanics of interacting fiber bundles

    Get PDF
    We consider quasistatic fiber bundle models with interactions. Classical load sharing rules are considered, i.e. local, global or decaying as a power-law of distance. All fibers are identically elastic, initially intact, and break at a random threshold picked from a quenched disorder (q.d.) distribution. We are interested in the probability distribution of configurations of broken fibers at a given elongation, averaged over all possible realizations of the underlying q.d.. This distribution is accessed by mapping the threshold set space onto the configurational space, each path corresponding to the evolution of a bundle corresponding to a realized q.d.. Using a perturbative approach allows to obtain this distribution to leading order in the interactions. This maps this system onto classical statistical mechanics models, i.e. percolation, standard or generalized Ising models depending on the range of the interactions chosen in the load sharing rule. This relates such q.d. based systems to standard classical mechanics, which allows to derive observables of the system, as e.g. correlation lengths. The thermodynamic parameters formally equivalent to temperature and chemical potential, are functions of the externally imposed deformation, depending on the load sharing rule and the choice of the q.d. distribution

    Hydrothermal coupling in a rough fracture

    Full text link
    Heat exchange during laminar flow is studied at the fracture scale on the basis of the Stokes equation. We used a synthetic aperture model (a self-affine model) that has been shown to be a realistic geometrical description of the fracture morphology. We developed a numerical modelling using a finite difference scheme of the hydrodynamic flow and its coupling with an advection/conduction description of the fluid heat. As a first step, temperature within the surrounding rock is supposed to be constant. Influence of the fracture roughness on the heat flux through the wall, is estimated and a thermalization length is shown to emerge. Implications for the Soultz-sous-For\^{e}ts geothermal project are discussed

    Dynamics and structure of interfacial crack fronts

    Get PDF
    The propagation of an interfacial crack front through a weak plane of a transparent Plexiglas block has been studied experimentally. A stable crack in mode I was generated by loading the system by an imposed displacement. The local velocities of the fracture front line have been measured by using an high speed CCD camera. The distribution of the velocities exhibits a power law behavior for velocities larger than the average front velocity with a crossover to a slowly increasing function for velocities lower than . The fluctuations in the velocities reflect an underlying irregular bursts activity with a power law distribution of the bursts. We further found that the size of the local bursts scales differently in the direction parallel to and perpendicular to the fracture front

    Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study

    Full text link
    The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic lattices. Beyond some critical slope for the boundaries, the velocity profile is observed to be far from a quadratic profile in the vicinity of the sharp asperity: the fluid within the triangular asperity is quasi-static. We find that taking account of both the 3D effects and the cooling of the rock, are important for the thermal exchange. Neglecting these effects with lubrication approximations results in overestimating the heat exchange efficiency. The evolution of the temperature over time, towards steady state, also shows complex behavior: some sites alternately reheat and cool down several times, making it difficult to forecast the extracted heat.Comment: In Journal of Geophysical Research B (2013) online firs

    Local waiting time fluctuations along a randomly pinned crack front

    Full text link
    The propagation of an interfacial crack along a heterogeneous weak plane of a transparent Plexiglas block is followed using a high resolution fast camera. We show that the fracture front dynamics is governed by local and irregular avalanches with very large size and velocity fluctuations. We characterize the intermittent dynamics observed, i.e. the local pinnings and depinnings of the crack front which trigger a rich burst activity, by measuring the local waiting time fluctuations along the crack front during its propagation. The local front line velocity distribution deduced from the waiting time analysis exhibits a power law behavior, P(v)vηP(v) \propto v^{-\eta} with η=2.55±0.15\eta = 2.55 \pm 0.15, for velocities vv larger than the average front speed . The burst size distribution is also a power law, P(S)SγP(S)\propto S^{-\gamma} with γ=1.7±0.1\gamma=1.7 \pm 0.1. Above a characteristic length scale of disorder Ld15μmL_d \sim 15 \mu m, the avalanche clusters become anisotropic, and the scaling of the anisotropy ratio provides an estimate of the roughness exponent of the crack front line, H=0.66H=0.66, in close agreement with previous independent estimates.Comment: Phys. Rev. Lett., accepte

    Dynamic development of hydrofracture

    Get PDF
    Many natural examples of complex joint and vein networks in layered sedimentary rocks are hydrofractures that form by a combination of pore fluid overpressure and tectonic stresses. In this paper, a two-dimensional hybrid hydro-mechanical formulation is proposed to model the dynamic development of natural hydrofractures. The numerical scheme combines a discrete element model (DEM) framework that represents a porous solid medium with a supplementary Darcy based pore-pressure diffusion as continuum description for the fluid. This combination yields a porosity controlled coupling between an evolving fracture network and the associated hydraulic field. The model is tested on some basic cases of hydro-driven fracturing commonly found in nature, e.g., fracturing due to local fluid overpressure in rocks subjected to hydrostatic and nonhydrostatic tectonic loadings. In our models we find that seepage forces created by hydraulic pressure gradients together with poroelastic feedback upon discrete fracturing play a significant role in subsurface rock deformation. These forces manipulate the growth and geometry of hydrofractures in addition to tectonic stresses and the mechanical properties of the porous rocks. Our results show characteristic failure patterns that reflect different tectonic and lithological conditions and are qualitatively consistent with existing analogue and numerical studies as well as field observations. The applied scheme is numerically efficient, can be applied at various scales and is computational cost effective with the least involvement of sophisticated mathematical computation of hydrodynamic flow between the solid grains

    Direct velocity measurement of a turbulent shear flow in a planar Couette cell

    Full text link
    In a plane Couette cell a thin fluid layer consisting of water is sheared between a transparent band at Reynolds numbers ranging from 300 to 1400. The length of the cells flow channel is large compared to the film separation. To extract the flow velocity in the experiments a correlation image velocimetry (CIV) method is used on pictures recorded with a high speed camera. The flow is recorded at a resolution that allows to analyze flow patterns similar in size to the film separation. The fluid flow is then studied by calculating flow velocity autocorrelation functions. The turbulent pattern that arise on this scale above a critical Reynolds number of Re=360 display characteristic patterns that are proven with the calculated velocity autocorrelation functions. The patterns are metastable and reappear at different positions and times throughout the experiments. Typically these patterns are turbulent rolls which are elongated in the stream direction which is the direction the band is moving. Although the flow states are metastable they possess similarities to the steady Taylor vortices known to appear in circular Taylor Couette cells

    Morphological analysis of stylolites for paleostress estimation in limestones surrounding the Andra Underground Research Laboratory site

    Get PDF
    We develop and test a methodology to infer paleostress from the morphology of stylolites within borehole cores. This non-destructive method is based on the analysis of the stylolite trace along the outer cylindrical surface of the cores. It relies on an automatic digitization of high-resolution photographs and on the spatial Fourier spectrum analysis of the stylolite traces. We test and show, on both synthetic and natural examples, that the information from this outer cylindrical surface is equivalent to the one obtained from the destructive planar sections traditionally used. The assessment of paleostress from the stylolite morphology analysis is made using a recent theoretical model, which links the morphological properties to the physical processes acting during stylolite evolution. This model shows that two scaling regimes are to be expected for the stylolite height power spectrum, separated by a cross-over length that depends on the magnitude of the paleostress during formation. We develop a non linear fit method to automatically extract the cross-over lengths from the digitized stylolite profiles. Results on cores from boreholes drilled in the surroundings of the Andra Underground Research Laboratory located at Bure, France, show that different groups of sedimentary stylolites can be distinguished, and correspond to different estimated vertical paleostress values. For the Oxfordian formation, one group of stylolites indicate a paleostress of around 10 MPa, while another group yields 15 MPa. For the Dogger formation, two stylolites indicate a paleostress of around 10 MPa, while others appear to have stopped growing at paleostresses between 30 and 22 MPa, starting at an erosion phase that initiated in the late Cretaceous and continues today. This method has a high potential for further applications on reservoirs or other geological contexts where stylolites are present.Comment: International Journal of Rock Mechanics and Mining Sciences (2013) online firs

    Growth activity during fingering in a porous Hele Shaw cell

    Get PDF
    We present in this paper an experimental study of the invasion activity during unstable drainage in a 2D random porous medium, when the (wetting) displaced fluid has a high viscosity with respect to that of the (non-wetting) displacing fluid, and for a range of almost two decades in capillary numbers corresponding to the transition between capillary and viscous fingering. We show that the invasion process takes place in an active zone within a characteristic screening length from the tip of the most advanced finger. The invasion probability density is found to only depend on the distance to the latter tip, and to be independent of the value for the capillary number Ca. The mass density along the flow direction is related analytically to the invasion probability density, and the scaling with respect to the capillary number is consistent with a power law. Other quantities characteristic of the displacement process, such as the speed of the most advanced finger tip or the characteristic finger width, are also consistent with power laws of the capillary number. The link between the growth probability and the pressure field is studied analytically and an expression for the pressure in the defending fluid along the cluster is derived. The measured pressure are then compared with the corresponding simulated pressure field using this expression for the boundary condition on the cluster.Comment: 11 pages 10 figure
    corecore