42 research outputs found

    A Tiny Change Makes a Big Difference in the Anti-Parasitic Activities of an HDAC Inhibitor

    No full text
    International audienceWe previously synthesized an hydroxamate derivative (N-hydroxy-4-[2-(3- methoxyphenyl)acetamido]benzamide) named 363 with potent anti-Toxoplasma gondii activity and histone deacetylase inhibitor (HDACi) effects. Here we show that 1-N-hydroxy-4-N- [(2-methoxyphenyl)methyl]benzene-1,4-dicarboxamide, a 363 isomer, does not have antiparasitic potency and has a 13-fold decrease in HDACi activity. The in silico modeling of T. gondii HDACs of the type II strain discloses identity varying from 25% to 62% on more than 250 residues for S8EP32_TOXG and A0A125YPH4_TOXGM. We observed a high conservation degree with the human HDAC2 (53% and 64% identity, respectively) and a moderate one with the human HDAC8 (30-40%). Two other TgHDACs, S8F6L4_TOXGM and S8GEI3_TOXGM, were identified as displaying a higher similarity with some bacterial orthologs (~35%) than with the human enzymes (~25%). The docking in parallel of the two compounds on the models generated allowed us to gain insights on the docking of these hydroxamate derivatives that guide their specificity and potency against T. gondii histone deacetylase. This information would constitute the rationale from which more specific derivatives can be synthetized

    Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces

    Get PDF
    International audienceAbstractBackgroundThe several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites.ResultsBy simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite.ConclusionsThis study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness

    Francisella novicida and F. philomiragia biofilm features conditionning fitness in spring water and in presence of antibiotics

    No full text
    International audienceBiofilms are currently considered as a predominant lifestyle of many bacteria in nature. While they promote survival of microbes, biofilms also potentially increase the threats to animal and public health in case of pathogenic species. They not only facilitate bacteria transmission and persistence, but also promote spreading of antibiotic resistance leading to chronic infections. In the case of Francisella tularensis, the causative agent of tularemia, biofilms have remained largely enigmatic. Here, applying live and static confocal microscopy, we report growth and ultrastructural organization of the biofilms formed in vitro by these microorganisms over the early transition from coccobacillary into coccoid shape during biofilm assembly. Using selective dispersing agents, we provided evidence for extracellular DNA (eDNA) being a major and conserved structural component of mature biofilms formed by both F. subsp. novicida and a human clinical isolate of F. philomiragia. We also observed a higher physical robustness of F. novicida biofilm as compared to F. philomiragia one, a feature likely promoted by specific polysaccharides. Further, F. novicida biofilms resisted significantly better to ciprofloxacin than their planktonic counterparts. Importantly, when grown in biofilms, both Francisella species survived longer in cold water as compared to free-living bacteria, a trait possibly associated with a gain in fitness in the natural aquatic environment. Overall, this study provides information on survival of Francisella when embedded with biofilms that should improve both the future management of biofilm-related infections and the design of effective strategies to tackle down the problematic issue of bacteria persistence in aquatic ecosystems

    Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis

    Get PDF
    SummaryThe Chinese herb Dichroa febrifuga has traditionally treated malaria-associated fever. Its active component febrifugine (FF) and derivatives such as halofuginone (HF) are potent anti-malarials. Here, we show that FF-based derivatives arrest parasite growth by direct interaction with and inhibition of the protein translation enzyme prolyl-tRNA synthetase (PRS). Dual administration of inhibitors that target different tRNA synthetases suggests high utility of these drug targets. We reveal the ternary complex structure of PRS-HF and adenosine 5â€Č-(ÎČ,Îł-imido)triphosphate where the latter facilitates HF integration into the PRS active site. Structural analyses also highlight spaces within the PRS architecture for HF derivatization of its quinazolinone, but not piperidine, moiety. We also show a remarkable ability of HF to kill the related human parasite Toxoplasma gondii, suggesting wider HF efficacy against parasitic PRSs. Hence, our cell-, enzyme-, and structure-based data on FF-based inhibitors strengthen the case for their inclusion in anti-malarial and anti-toxoplasmosis drug development efforts

    Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma

    No full text
    International audienceAmong the eukaryotic cells that navigate through fully developed metazoan tissues, protozoans from the Apicomplexa phylum have evolved motile developmental stages that move much faster than the fastest crawling cells owing to a peculiar substrate-dependent type of motility, known as gliding. Best-studied models are the Plasmodium sporozoite and the Toxoplasma tachyzoite polarized cells for which motility is vital to achieve their developmental programs in the metazoan hosts. The gliding machinery is shared between the two parasites and is largely characterized. Localized beneath the cell surface, it includes actin filaments, unconventional myosin motors housed within a multimember glideosome unit, and apically secreted transmembrane adhesins. In contrast, less is known about the force mechanisms powering cell movement. Pioneered biophysical studies on the sporozoite and phenotypic analysis of tachyzoite actin-related mutants have added complexity to the general view that force production for parasite forward movement directly results from the myosin-driven rearward motion of the actin-coupled adhesion sites. Here, we have interrogated how forces and substrate adhesion–de-adhesion cycles operate and coordinate to allow the typical left-handed helical gliding mode of the tachyzoite. By combining quantitative traction force and reflection interference microscopy with micropatterning and expansion microscopy, we unveil at the millisecond and nanometer scales the integration of a critical apical anchoring adhesion with specific traction and spring-like forces. We propose that the acto-myoA motor directs the traction force which allows transient energy storage by the microtubule cytoskeleton and therefore sets the thrust force required for T. gondii tachyzoite vital helical gliding capacity

    Glia-derived D-serine controls NMDA receptor activity and synaptic memory.

    No full text
    The NMDA receptor is a key player in excitatory transmission and synaptic plasticity in the central nervous system. Its activation requires the binding of both glutamate and a co-agonist like D-serine to its glycine site. As D-serine is released exclusively by astrocytes, we studied the physiological impact of the glial environment on NMDA receptor-dependent activity and plasticity. To this end, we took advantage of the changing astrocytic ensheathing of neurons occurring in the supraoptic nucleus during lactation. We provide direct evidence that in this hypothalamic structure the endogenous co-agonist of NMDA receptors is D-serine and not glycine. Consequently, the degree of astrocytic coverage of neurons governs the level of glycine site occupancy on the NMDA receptor, thereby affecting their availability for activation and thus the activity dependence of long-term synaptic changes. Such a contribution of astrocytes to synaptic metaplasticity fuels the emerging concept that astrocytes are dynamic partners of brain signaling

    Toxoplasma Parasite Twisting Motion Mechanically Induces Host Cell Membrane Fission to Complete Invasion within a Protective Vacuole

    No full text
    International audienceTo invade cells, the parasite Toxoplasma gondii injects a multi-unit nanodevice into the target cell plasma membrane (PM). The core nanodevice, which is composed of the RhOptry Neck (RON) protein complex, connects Toxoplasma and host cell through a circular tight junction (TJ). We now report that this RON nanodevice mechanically promotes membrane scission at the TJ-PM interface, directing a physical rotation driven by the parasite twisting motion that enables the budding parasitophorous vacuole (PV) to seal and separate from the host cell PM as a bona fide subcellular Toxoplasma-loaded PV. Mechanically impairing the process induces swelling of the budding PV and death of the parasite but not host cell. Moreover, this study reveals that the parasite nanodevice functions as a molecular trigger to promote PV membrane remodeling and rapid onset of T. gondii to intracellular lifestyle
    corecore