8 research outputs found

    Structures, Properties and Applications of Alginates

    No full text
    Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties

    Microalgae: A Promising Source of Bioactive Phycobiliproteins

    No full text
    Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, to provide a detailed and thorough overview of the optimization of culture media elements, as well as various physical parameters, to improve the large-scale manufacturing of such bioactive molecules. The second section of the review offers systematic, deep and detailed data about the current main features of phycobiliproteins. In the ultimate section, the health and nutritional claims related to these bioactive pigments, explaining their noticeable potential for biotechnological uses in various fields, are examined

    Improvement of Biomass and Phycoerythrin Production by a Strain of Rhodomonas sp. Isolated from the Tunisian Coast of Sidi Mansour

    No full text
    International audienceMicroalgae are photoautotrophic microorganisms known as producers of a large variety of metabolites. The taxonomic diversity of these microorganisms has been poorly explored. In this study, a newly isolated strain was identified based on the 18S rRNA encoding gene. The phylogenetic analysis showed that the isolated strain was affiliated with the Rhodomonas genus. This genus has greatly attracted scientific attention according to its capacity to produce a large variety of metabolites, including phycoerythrin. Growth and phycoerythrin production conditions were optimized using a Plackett–Burman design and response surface methodology. An expression profile analysis of the cpeB gene, encoding the beta subunit of phycoerythrin, was performed by qRT-PCR under standard and optimized culture conditions. The optimization process showed that maximum cell abundance was achieved under the following conditions: CaCl2 = 2.1328 g/L, metal solution = 1 mL/L, pH = 7 and light intensity = 145 ÎŒmol photons/m2/s, whereas maximum phycoerythrin production level occurred when CaCl2 = 1.8467 g/L, metal solution = 1 mL/L, pH = 7 and light intensity = 157 ÎŒmol/m2/s. In agreement, positive transcriptional regulation of the cpeB gene was demonstrated using qRT-PCR. This study showed the successful optimization of abiotic conditions for highest growth and phycoerythrin production, making Rhodomonas sp. suitable for several biotechnological applications

    Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat

    No full text
    International audienceThe present study was undertaken to determine whether subacute treatment with aqueous extract of carob (Ceratonia siliqua L.) pods (AECPs) protects against ethanol (EtOH)-induced oxidative stress in rat liver. Animals were divided into four groups: control, carob, EtOH and EtOH+carob. Wistar rats were intraperitoneally pretreated with AECP (600mg/kg body weight (bw)) during 7days and intoxicated for 6h by acute oral administration of EtOH (6g/kg bw) 24h after the last injection. We found that acute administration of EtOH leads to hepatotoxicity as monitored by the increase in the levels of hepatic marker aspartate aminotransferase and alanine aminotransferase as well as hepatic tissue injury. EtOH also increased the formation of malondialdehyde in the liver, indicating an increase in lipid peroxidation and depletion of antioxidant enzyme activities as superoxide dismutase, catalase and glutathione peroxidase. Subacute carob pretreatment prevented all the alterations induced by EtOH and returned their levels to near normal. Importantly, we showed that acute alcohol increased hepatic and plasmatic hydrogen peroxide and free iron levels. The carob pretreatment reversed EtOH effects to near control levels. These data suggest that carob could have a beneficial effect in inhibiting the oxidative damage induced by acute EtOH administration and that its mode of action may involve an opposite effect on plasma and tissue-free iron accumulation. Indeed, carob can be offered as a food additive to protect against EtOH-induced oxidative damage

    Bioactive Polysaccharides from Seaweeds

    No full text
    International audienceBioactive compounds with diverse chemical structures play a significant role in disease prevention and maintenance of physiological functions. Due to the increase in industrial demand for new biosourced molecules, several types of biomasses are being exploited for the identification of bioactive metabolites and techno-functional biomolecules that are suitable for the subsequent uses in cosmetic, food and pharmaceutical fields. Among the various biomasses available, macroalgae are gaining popularity because of their potential nutraceutical and health benefits. Such health effects are delivered by specific diterpenes, pigments (fucoxanthin, phycocyanin, and carotenoids), bioactive peptides and polysaccharides. Abundant and recent studies have identified valuable biological activities of native algae polysaccharides, but also of their derivatives, including oligosaccharides and (bio)chemically modified polysaccharides. However, only a few of them can be industrially developed and open up new markets of active molecules, extracts or ingredients. In this respect, the health and nutraceutical claims associated with marine algal bioactive polysaccharides are summarized and comprehensively discussed in this review

    Structural Characterization and Rheological and Antioxidant Properties of Novel Polysaccharide from Calcareous Red Seaweed

    No full text
    International audienceA novel sulfated xylogalactan (JASX) was extracted and purified from the rhodophyceaeJania adhaerens. JASX was characterized by chromatography (GC/MS-EI and SEC/MALLS) and spectroscopy (ATR-FTIR and 1H/13C NMR) techniques. Results showed that JASX was constitutedby repeating units of (!3)-beta-D-Galp-(1,4)-3,6-alpha-L-AnGalp-(1!)n and (!3)-beta-D-Galp-(1,4)-alpha-L-Galp-(1!)n substituted on O-2 and O-3 of the alpha-(1,4)-L-Galp units by methoxy and/or sulfate groups but also on O-6 of the beta-(1,3)-D-Galp mainly by beta-xylosyl side chains and less by methoxy and/or sulfate groups. The Mw, Mn, Ð, [h] and C* of JASX were respectively 600 and 160 kDa, 3.7, 102 mL.g-1 and 7.0 g.L-1. JASX exhibited pseudoplastic behavior influenced by temperature and monovalent salts and highly correlated to the power-law model and the Arrhenius relationship. JASX presented thixotropic characteristics, a gel-like viscoelastic behavior and a great viscoelasticity character. JASX showed important antioxidant activities, outlining its potential as a natural additive to produce functional foods
    corecore