29 research outputs found

    Apple Pomace Consumption Favorably Alters Hepatic Lipid Metabolism in Young Female Sprague-Dawley Rats Fed a Western Diet

    Get PDF
    Apple pomace, which is a waste byproduct of processing, is rich in several nutrients, particularly dietary fiber, indicating potential benefits for diseases that are attributed to poor diets, such as non-alcoholic fatty liver disease (NAFLD). NAFLD affects over 25% of United States population and is increasing in children. Increasing fruit consumption can influence NAFLD. The study objective was to replace calories in standard or Western diets with apple pomace to determine the effects on genes regulating hepatic lipid metabolism and on risk of NAFLD. Female Sprague-Dawley rats were randomly assigned (n = 8 rats/group) to isocaloric diets of AIN-93G and AIN-93G/10% w/w apple pomace (AIN/AP) or isocaloric diets of Western (45% fat, 33% sucrose) and Western/10% w/w apple pomace (Western/AP) diets for eight weeks. There were no significant effects on hepatic lipid metabolism in rats fed AIN/AP. Western/AP diet containing fiber-rich apple pomace attenuated fat vacuole infiltration, elevated monounsaturated fatty acid content, and triglyceride storage in the liver due to higher circulating bile and upregulated hepatic DGAT2 gene expression induced by feeding a Western diet. The study results showed the replacement of calories in Western diet with apple pomace attenuated NAFLD risk. Therefore, apple pomace has the potential to be developed into a sustainable functional food for human consumption

    Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats

    Get PDF
    Background Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Methods Female Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR). Results Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. Conclusions On the basis that the optimal n-3 PUFA sources should provide high digestibility and efficient tissue incorporation with the least tissue lipid peroxidation, TO and SO appeared to be the most beneficial of the n-3 PUFAs sources evaluated in this study

    Biofortification of Sodium Selenate Improves Dietary Mineral Contents and Antioxidant Capacity of Culinary Herb Microgreens

    Get PDF
    Selenium biofortification of plants has been suggested as a method of enhancing dietary seleniumintake to prevent deficiency and chronic disease in humans, while avoiding toxic levels of intake. Popular herbs such as basil (Ocimum basilicum L.), cilantro (Coriandrum sativum L.), and scallions (Allium fistulosum L.) present an opportunity for biofortification as these plants are used for added flavors to meals and are available as microgreens, young plants with increasing popularity in the consumer marketplace. In this study, basil, cilantro, and scallion microgreens were biofortified with sodium selenate under hydroponic conditions at various selenium concentrations to investigate the effects on yield, selenium content, other mineral contents (i.e., sodium, potassium, calcium, magnesium, phosphorus, copper, zinc, iron, manganese, sulfur, and boron), total phenol content, and antioxidant capacity [oxygen radical absorbance capacity (ORAC)]. The results showed that the selenium content increased significantly at all concentrations, with scallions demonstrating the largest increase. The effects on other minerals varied among herb species. Antioxidant capacity and total phenol content increased in all herbs at the highest selenium treatments, but basil and scallions demonstrated a decreased crop yield. Overall, these biofortified culinary herbmicrogreens are an ideal functional food for enhancing selenium, other dietary minerals, and antioxidants to benefit human health

    Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder in which the loss of dystrophin causes progressive degeneration of skeletal and cardiac muscle. Potential therapies that carry substantial risk, such as gene and cell-based approaches, must first be tested in animal models, notably the mdx mouse and several dystrophin-deficient breeds of dogs, including golden retriever muscular dystrophy (GRMD). Affected dogs have a more severe phenotype, in keeping with that of DMD, so may better predict disease pathogenesis and treatment efficacy. We and others have developed various phenotypic tests to characterize disease progression in the GRMD model. These biomarkers range from measures of strength and joint contractures to magnetic resonance imaging. Some of these tests are routinely used in clinical veterinary practice, while others require specialized equipment and expertise. By comparing serial measurements from treated and untreated groups, one can document improvement or delayed progression of disease. Potential treatments for DMD may be broadly categorized as molecular, cellular, or pharmacologic. The GRMD model has increasingly been used to assess efficacy of a range of these therapies. While some of these studies have largely provided general proof-of-concept for the treatment under study, others have demonstrated efficacy using the biomarkers discussed. Importantly, just as symptoms in DMD vary among patients, GRMD dogs display remarkable phenotypic variation. While confounding statistical analysis in preclinical trials, this variation offers insight regarding the role that modifier genes play in disease pathogenesis. By correlating functional and mRNA profiling results, gene targets for therapy development can be identified

    Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease

    Get PDF
    Background: Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD.Methods: Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks.Results: Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups.Conclusions: Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.Peer reviewedNutritional Science

    The effects of flaxseed and its components on reproductive indices and cancer risk in rats

    No full text
    grantor: University of TorontoFlaxseed is a rich source Ã-linolenic add (ALA) and secoisolariciresinol diglycoside (SDG). The objective of this study was to determine whether feeding various doses of flaxseed or its SDG or ALA components to rats during different developmental stages influences reproduction and cancer risk. Pregnant rats were fed basal diet (BD), BD supplemented with either 10% flaxseed, 5% flaxseed or its equivalent amount of flaxseed oil (1.82%) or SDG (1.5 mg/d). At weaning, the offspring were fed diets resulting in no dietary flaxseed treatment, dietary flaxseed fed only during gestation and lactation, after weaning or from gestation until adulthood. Flaxseed had no effect on the dam's pregnancy or lactation but altered offspring reproductive indices. Gestation and lactation or gestation until postnatal day (PND) 132 feeding altered reproductive indices whereas feeding after weaning had no effect. Reproductive changes differed depending on dose. The 10% flaxseed estrogenized the female offspring as indicated by lower birth weight, shortened anogenital distance, greater immature uterine weight, earlier age and lighter body weight at puberty, and, at a later age, greater ovarian weight, lengthened estrous cycles and persistent estrus. The male offspring had lower birth weight, reduced postnatal weight gain and, at PND 132, greater relative accessory sex gland and prostate weights suggesting estrogenic effects. In contrast, 5% flaxseed reduced immature ovarian weight, delayed puberty and lengthened diestrus indicating an antiestrogenic effect. The SDG produced similar effects to those of the 5% flaxseed suggesting that lignans were responsible for the observed effects. Lignans were transferred to the offspring via rat milk as indicated by the recovery of radioactivity in the offspring of lactating dams given 3H-SDG. In the mammary gland, both flaxseed doses reduced the terminal end bud structures suggesting cancer protective effects. In the prostate, flaxseed and SDG produced effects that may be cancer protective at moderate dose (5%), but not at the high dose (10%). In conclusion, feeding 10% flaxseed produced permanent reproductive changes and potentially increased prostate disease risk. On the other hand, the lower 5% flaxseed dose resulted in few reproductive effects and produced potential protective effects against mammary and prostate cancer risk.Ph.D

    A comprehensive analysis of the composition, health benefits, and safety of apple pomace

    No full text
    Apple processing results in peel, stem, seeds, and pulp being left as a waste product known as apple pomace. This review comprehensively assessed apple pomace composition for nutritional value and bioactive substances and evaluated potential health benefits and safety. Apple pomace is a rich source of health-benefitting nutrients, including minerals, dietary fiber, antioxidants, and ursolic acid, which suggests it has potential use as a dietary supplement, functional food, and/or food additive. Preclinical studies have found apple pomace and its isolated extracts improved lipid metabolism, antioxidant status, and gastrointestinal function and had a positive effect on metabolic disorders (eg, hyperglycemia, insulin resistance, etc.). Safety studies have shown apple pomace to be a safe livestock feed additive and to have pesticide concentrations within safety thresholds established for human consumption. Commercial development of apple pomace for human consumption requires more research focusing on standardized methods of nutrient reporting, mechanistic studies, and human clinical trials
    corecore