14 research outputs found

    Recent Advances and Additives of Bone Cement and Bone Augments for Arthroplastic Surgeries

    Get PDF
    ABSTRACT As life expectancies rise and the average age of our population increases, there has emerged a growing need for joint repair and replacement surgeries due to worn out, torn, or damaged cartilage and bone tissue. This has resulted in an escalating demand for further development of the materials used in joint replacement surgeries and advances in joint repair technology. Researchers in the tissue engineering and regenerative medicine fields have furthered the development of advanced materials for musculoskeletal repair by utilizing growth factors, nanomaterials, and antibiotics within the repair material. The first aim of this thesis was to provide a summary of the current literature on advances in joint repair materials. While there have been many advances utilizing calcium phosphates to aid in bone regeneration; calcium phosphates now just represent a single ingredient within the state-of-the-art complex biomaterials for joint repair. These combination materials can achieve up-regulation of osteogenesis within the wound site. Furthermore, as the advances in nanofabrication have branched to most fields of science and engineering, the development of complex nanocomposites has become a common strategy for resolving difficult multi-tissue repair problems. The development of this class of bioactive, biomaterial nanocomposites is reviewed within today’s current literature. The second aim of this thesis was to construct a new biomaterial aiding in joint repair. By utilizing thermally initiated frontal polymerization, a bioactive, degradable bone augment was constructed that would provide orthopedic surgeons a material with an extended working time, good mechanical stability, and potentially osteoconductive and osteoinductive activity. Four ratios of monomers were explored in an effort to optimize the mechanical properties, chemical stability and cytocompatibility. The ratio of 5:1 acrylate monomer to thiol monomer provided the best overall material characteristics: high cytocompatibility, compressive mechanical strength of 3.65 MPa, and a maximum propagation temperature of 160°C +/- 10°C

    Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago

    Get PDF
    Background: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA. Methods: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up. Results: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P < 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (≤ 3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections. Conclusions: After 100 years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception

    Production and analysis of stable microfluidic devices with tunable surface hydrophilicity via the in-situ tertiary-amine catalyzed Michael addition of a multifunctional thiol to a multifunctional acrylate

    No full text
    © 2020 Elsevier Ltd Poly(dimethylsiloxane) (PDMS) is one of the dominant polymeric hydrophobic materials that has been widely used in microfluidic devices. Here, we employed amine-catalyzed thiol-acrylate chemistry with hydrophilic and fluorinated acrylates to produce a wide range of stable hydrophilic materials without use of expensive instrumentation or complicated techniques to activate surfaces. The process involved the Michael addition of a secondary amine to a multifunctional acrylate followed by bulk modification of the polymer network with monofunctional acrylates. The surface energies of the bulk modified thiol-acrylate thermoset materials were more stable and tunable than the surface energies of physically/chemically treated PDMS. The surface energies of these microfluidics devices were programmed to have water contact angles ranging from highly hydrophilic (~11°) to slightly hydrophilic (~85°). A complete microfluidic device was fabricated illustrating the potential material as an alternative of PDMS to be used as microfluidics devices

    Fabrication and Characterization of Stable Hydrophilic Microfluidic Devices Prepared via the in Situ Tertiary-Amine Catalyzed Michael Addition of Multifunctional Thiols to Multifunctional Acrylates

    No full text
    In situ tertiary amine-catalyzed thiol–acrylate chemistry was employed to produce hydrophilic microfluidic devices via a soft lithography process. The process involved the Michael addition of a secondary amine to a multifunctional acrylate producing a nonvolatile in situ tertiary amine catalyst/comonomer molecule. The Michael addition of a multifunctional thiol to a multifunctional acrylate was facilitated by the catalytic activity of the in situ catalyst/comonomer. These cost-efficient thiol–acrylate devices were prepared at room temperature, rapidly, and with little equipment. The thiol–acrylate thermoset materials were more natively hydrophilic than the normally employed poly­(dimethylsiloxane) (PDMS) thermoset material, and the surface energies were stable compared to PDMS. Because the final chip was self-adhered via a simple chemical process utilizing the same chemistry, and it was naturally hydrophilic, there was no need for expensive instrumentation or complicated methods to “activate” the surface. There was also no need for postprocessing removal of the catalyst as it was incorporated into the polymer network. These bottom-up devices were fabricated to completion proving their validity as microfluidic devices, and the materials were manipulated and characterized via various analyses illustrating the potential diversity and tunability of the devices

    Establishment and characterization of a new mantle cell lymphoma cell line with a NOTCH2 mutation, Arbo

    No full text
    Abstract Cell lines represent an essential tool used in preclinical research. Most hematologic malignancies have a wide array of cell lines representing their respective molecular and pathologic spectra. In mantle cell lymphoma (MCL), cell lines become specifically valuable in view of the heterogeneity of this disease. Unfortunately, the number of MCL cell lines that are available for the research community remains small, with only nine cell lines available for purchase through the American Type Culture Collection (ATCC). We have established a novel blastoid MCL cell line, isolated from the malignant pleural effusion of a 69‐year‐old male with refractory MCL. Arbo was fully characterized with cytogenetics, immunophenotyping, whole exome sequencing and drug sensitivity assays. One of the most notable mutations identified in Arbo (but not in normal tissue) was the missense mutation NOTCH2 R2400*, which has been proposed as a clinically significant mutation in MCL seen in 5% of cases. NOTCH2 R2400* results in a truncated Notch2 protein, leading to a more stable and active protein. Using pharmacologic inhibition of Notch2, we showed a dependence of Arbo on NOTCH2 signaling, as well as a link between CD23 expression on Arbo and NOTCH2 activity. Arbo represents a NOTCH2 mutated model that is useful in MCL as well as other lymphomas with such mutation. We plan to deposit Arbo at the ATCC to be available for the research community

    Expert consensus on training and accreditation for extracorporeal cardiopulmonary resuscitation an international, multidisciplinary modified Delphi Study

    Get PDF
    Background: A multidisciplinary group of stakeholders were used to identify: (1) the core competencies of a training program required to perform in-hospital ECPR initiation (2) additional competencies required to perform pre-hospital ECPR initiation and; (3) the optimal training method and maintenance protocol for delivering an ECPR program. Methods: A modified Delphi process was undertaken utilising two web based survey rounds and one virtual meeting. Experts rated the importance of different aspects of ECPR training, competency and governance on a 9-point Likert scale. A diverse, representative group was targeted. Consensus was achieved when greater than 70% respondents rated a domain as critical (&gt; or = 7 on the 9 point Likert scale).Results: 35 international ECPR experts from 9 countries formed the expert panel, with a median number of 14 years of ECMO practice (interquartile range 11–38). Participant response rates were 97% (survey round one), 63% (virtual meeting) and 100% (survey round two). After the second round of the survey, 47 consensus statements were formed outlining a core set of competencies required for ECPR provision. We identified key elements required to safely train and perform ECPR including skill pre-requisites, surrogate skill identification, the importance of competency-based assessment over volume of practice and competency requirements for successful ECPR practice and skill maintenance. Conclusions: We present a series of core competencies, training requirements and ongoing governance protocols to guide safe ECPR implementation. These findings can be used to develop training syllabus and guide minimum standards for competency as the growth of ECPR practitioners continues.</p
    corecore