454 research outputs found

    Galactic-Center Hyper-Shell Model for the North Polar Spurs

    Get PDF
    The bipolar-hyper shell (BHS) model for the North Polar Spurs (NPS-E, -W, and Loop I) and counter southern spurs (SPS-E and -W) is revisited based on numerical hydrodynamical simulations. Propagations of shock waves produced by energetic explosive events in the Galactic Center are examined. Distributions of soft X-ray brightness on the sky at 0.25, 0.7, and 1.5 keV in a +/-50 deg x +/-50 deg region around the Galactic Center are modeled by thermal emission from high-temperature plasma in the shock-compressed shell considering shadowing by the interstellar HI and H2 gases. The result is compared with the ROSAT wide field X-ray images in R2, 4 and 6 bands. The NPS and southern spurs are well reproduced by the simulation as shadowed dumbbell-shaped shock waves. We discuss the origin and energetics of the event in relation to the starburst and/or AGN activities in the Galactic Center. [ High resolution pdf is available at http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2016bhs/ ]Comment: 13 pages, 20 figures; To appear in MNRA

    X-ray and Radio Follow-up Observations of High-Redshift Blazar Candidates in the Fermi-LAT Unassociated Source Population

    Full text link
    We report on the results of X-ray and radio follow-up observations of two GeV gamma-ray sources 2FGL J0923.5+1508 and 2FGL J1502.1+5548, selected as candidates for high-redshift blazars from unassociated sources in the {\it Fermi} Large Area Telescope Second Source Catalog. We utilize the Suzaku satellite and the VLBI Exploration of Radio Astrometry (VERA) telescopes for X-ray and radio observations, respectively. For 2FGL J0923.5+1508, a possible radio counterpart NVSS J092357+150518 is found at 1.4 GHz from an existing catalog, but we do not detect any X-ray emission from it and derive a flux upper limit F2−8keV<F_{\rm 2-8 keV} < 1.37 ×\times 10−14^{-14} erg cm−2^{-2} s−1^{-1}. Radio observations at 6.7 GHz also result in an upper limit of S6.7GHzS_{\rm 6.7 GHz} << 19 mJy, implying a steep radio spectrum that is not expected for a blazar. On the other hand, we detect X-rays from NVSS J150229+555204, the potential 1.4 GHz radio counterpart of 2FGL J1502.1+5548. The X-ray spectrum can be fitted with an absorbed power-law model with a photon index Îł\gamma=1.8−0.2+0.3^{+0.3}_{-0.2} and the unabsorbed flux is F2−8keVF_{\rm 2-8 keV}=4.3−1.0+1.1^{+1.1}_{-1.0} ×\times 10−14^{-14} erg cm−2^{-2} s−1^{-1}. Moreover, we detect unresolved radio emission at 6.7 GHz with flux S6.7GHzS_{\rm 6.7 GHz}=30.1 mJy, indicating a compact, flat-spectrum radio source. If NVSS J150229+555204 is indeed associated with 2FGL J1502.1+5548, we find that its multiwavelength spectrum is consistent with a blazar at redshift z∌3−4z \sim 3-4.Comment: 24 pages, 7 figures, 6 tables, accepted for publication in Ap

    Lyman Alpha Emitters in the Hierarchically Clustering Galaxy Formation

    Full text link
    We present a new theoretical model for the luminosity functions (LFs) of Lyman alpha (Lya) emitting galaxies in the framework of hierarchical galaxy formation. We extend a semi-analytic model of galaxy formation that reproduces a number of observations for local and high-z galaxies, without changing the original model parameters but introducing a physically-motivated modelling to describe the escape fraction of Lya photons from host galaxies (f_esc). Though a previous study using a hierarchical clustering model simply assumed a constant and universal value of f_esc, we incorporate two new effects on f_esc: extinction by interstellar dust and galaxy-scale outflow induced as a star formation feedback. It is found that the new model nicely reproduces all the observed Lya LFs of the Lya emitters (LAEs) at different redshifts in z ~ 3-6. Especially, the rather surprisingly small evolution of the observed LAE Lya LFs compared with the dark halo mass function is naturally reproduced. Our model predicts that galaxies with strong outflows and f_esc ~ 1 are dominant in the observed LFs. This is also consistent with available observations, while the simple universal f_esc model requires f_esc << 1 not to overproduce the brightest LAEs. On the other hand, we found that our model significantly overpredicts LAEs at z > 6, and absorption of Lya photons by neutral hydrogen in intergalactic medium (IGM) is a reasonable interpretation for the discrepancy. This indicates that the IGM neutral fraction x_HI rapidly evolves from x_HI << 1 at z < 6 to a value of order unity at z ~ 6-7, which is broadly consistent with other observational constraints on the reionization history.Comment: 14 pages, 7 figures, 1 table; accepted to ApJ; the html abstract is replaced to match the accepted version, the .ps and .pdf files are strictly identical between the 2nd and the 3rd version

    Effects of Neutrino Oscillation on the Supernova Neutrino Spectrum

    Get PDF
    The effects of three-flavor neutrino oscillation on the supernova neutrino spectrum are studied. We calculate the expected event rate and energy spectra, and their time evolution at the Superkamiokande (SK) and the Sudbury Neutrino Observatory (SNO), by using a realistic neutrino burst model based on numerical simulations of supernova explosions. We also employ a realistic density profile based on a presupernova model for the calculation of neutrino conversion probability in supernova envelopes. These realistic models and numerical calculations allow us to quantitatively estimate the effects of neutrino oscillation in a more realistic way than previous studies. We then found that the degeneracy of the solutions of the solar neutrino problem can be broken by the combination of the SK and SNO detections of a future Galactic supernova.Comment: 10 pages, 14 figures, corrected versio

    Evolution of the Luminosity Density in the Universe: Implications for the Nonzero Cosmological Constant

    Get PDF
    We show that evolution of the luminosity density of galaxies in the universe provides a powerful test for the geometry of the universe. Using reasonable galaxy evolution models of population synthesis which reproduce the colors of local galaxies of various morphological types, we have calculated the luminosity density of galaxies as a function of redshift zz. Comparison of the result with recent measurements by the Canada-France Redshift Survey in three wavebands of 2800{\AA}, 4400{\AA}, and 1 micron at z<1 indicates that the \Lambda-dominated flat universe with \lambda_0 \sim 0.8 is favored, and the lower limit on \lambda_0 yields 0.37 (99% C.L.) or 0.53 (95% C.L.) if \Omega_0+\lambda_0=1. The Einstein-de Sitter universe with (\Omega_0, \lambda_0)=(1, 0) and the low-density open universe with (0.2, 0) are however ruled out with 99.86% C.L. and 98.6% C.L., respectively. The confidence levels quoted apply unless the standard assumptions on galaxy evolution are drastically violated. We have also calculated a global star formation rate in the universe to be compared with the observed rate beyond z \sim 2. We find from this comparison that spiral galaxies are formed from material accretion over an extended period of a few Gyrs, while elliptical galaxies are formed from initial star burst at z >~ 5 supplying enough amount of metals and ionizing photons in the intergalactic medium.Comment: 11 pages including 3 figures, LaTeX, uses AASTeX. To Appear in ApJ Letter

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur
    • 

    corecore