218 research outputs found
Physician associates: a solution for healthcare shortages or a colonial throwback?
No abstract available
Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension
BACKGROUND: Beyond their role as innate immune effectors, natural killer (NK) cells are emerging as important regulators of angiogenesis and vascular remodeling. Pulmonary arterial hypertension (PAH) is characterized by severe pulmonary vascular remodeling and has long been associated with immune dysfunction. Despite this association, a role for NK cells in disease pathology has not yet been described.
METHODS AND RESULTS: Analysis of whole blood lymphocytes and isolated NK cells from PAH patients revealed an expansion of the functionally defective CD56(-)/CD16(+) NK subset that was not observed in patients with chronic thromboembolic pulmonary hypertension. NK cells from PAH patients also displayed decreased levels of the activating receptor NKp46 and the killer immunoglobulin-like receptors 2DL1/S1 and 3DL1, reduced secretion of the cytokine macrophage inflammatory protein-1β, and a significant impairment in cytolytic function associated with decreased killer immunoglobulin-like receptor 3DL1 expression. Genotyping patients (n=222) and controls (n=191) for killer immunoglobulin-like receptor gene polymorphisms did not explain these observations. Rather, we show that NK cells from PAH patients exhibit increased responsiveness to transforming growth factor-β, which specifically downregulates disease-associated killer immunoglobulin-like receptors. NK cell number and cytotoxicity were similarly decreased in the monocrotaline rat and chronic hypoxia mouse models of PAH, accompanied by reduced production of interferon-γ in NK cells from hypoxic mice. NK cells from PAH patients also produced elevated quantities of matrix metalloproteinase 9, consistent with a capacity to influence vascular remodeling.
CONCLUSIONS: Our work is the first to identify an impairment of NK cells in PAH and suggests a novel and substantive role for innate immunity in the pathobiology of this disease
Generation and Culture of Blood Outgrowth Endothelial Cells from Human Peripheral Blood.
Historically, the limited availability of primary endothelial cells from patients with vascular disorders has hindered the study of the molecular mechanisms underlying endothelial dysfunction in these individuals. However, the recent identification of blood outgrowth endothelial cells (BOECs), generated from circulating endothelial progenitors in adult peripheral blood, may circumvent this limitation by offering an endothelial-like, primary cell surrogate for patient-derived endothelial cells. Beyond their value to understanding endothelial biology and disease modeling, BOECs have potential uses in endothelial cell transplantation therapies. They are also a suitable cellular substrate for the generation of induced pluripotent stem cells (iPSCs) via nuclear reprogramming, offering a number of advantages over other cell types. We describe a method for the reliable generation, culture and characterization of BOECs from adult peripheral blood for use in these and other applications. This approach (i) allows for the generation of patient-specific endothelial cells from a relatively small volume of adult peripheral blood and (ii) produces cells that are highly similar to primary endothelial cells in morphology, cell signaling and gene expression
Recommended from our members
Rising COVID-19 related acute pulmonary emboli but falling national chronic thromboembolic pulmonary hypertension referrals from a large national dataset.
The average rate of new #CTEPH referrals has dropped by 32% in the UK during the pandemic, despite the high incidence of #COVID19 related pulmonary emboli. There have been no recorded new cases of CTEPH caused by COVID-19. A prospective study is underway. https://bit.ly/37msP2G
Recommended from our members
The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities.
The pulmonary endothelium is a dynamic, metabolically active layer of squamous endothelial cells ideally placed to mediate key processes involved in lung homoeostasis. Many of these are disrupted in acute respiratory distress syndrome (ARDS), a syndrome with appreciable mortality and no effective pharmacotherapy. In this review, we consider the role of the pulmonary endothelium as a key modulator and orchestrator of ARDS, highlighting advances in our understanding of endothelial pathobiology and their implications for the development of endothelial-targeted therapeutics including cell-based therapies. We also discuss mechanisms to facilitate the translation of preclinical data into effective therapies including the application of biomarkers to phenotype patients with ARDS with a predominance of endothelial injury and emerging biotechnologies that could enhance delivery, discovery and testing of lung endothelial-specific therapeutics.This work was supported by the Royal Brompton and Harefield NHS Foundation Trust, NIHR Respiratory Biomedical Research Unit, London, United Kingdom
COMPETING INTERESTS
CS was a co-investigator on a project grant, funded GlaxoSmithKline, which undertook preclinical assessment of the effects of a potential ARDS therapy on human neutrophils (2012-14).
MG & CS have received fees for consultancy from GSK. MG and AGP have had unrestricted Project Grant support from GlaxoSmithKline.
FUNDING
CS is a Wellcome Trust Postdoctoral Clinical Research Training Fellow. [WT101692MA].This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the British Medical Journal
The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations.
Pulmonary arterial hypertension (PAH) is characterized by dysregulated pulmonary artery endothelial cell (PAEC) proliferation, apoptosis and permeability. Loss-of-function mutations in the bone morphogenetic protein receptor type-II (BMPR-II) are the most common cause of heritable PAH, usually resulting in haploinsufficiency. We previously showed that BMPR-II expression is regulated via a lysosomal degradative pathway. Here, we show that the antimalarial drug, chloroquine, markedly increased cell surface expression of BMPR-II protein independent of transcription in PAECs. Inhibition of protein synthesis experiments revealed a rapid turnover of cell surface BMPR-II, which was inhibited by chloroquine treatment. Chloroquine enhanced PAEC expression of BMPR-II following siRNA knockdown of the BMPR-II transcript. Using blood outgrowth endothelial cells (BOECs), we confirmed that signalling in response to the endothelial BMPR-II ligand, BMP9, is compromised in BOECs from patients harbouring BMPR-II mutations, and in BMPR-II mutant PAECs. Chloroquine significantly increased gene expression of BMP9-BMPR-II signalling targets Id1, miR21 and miR27a in both mutant BMPR-II PAECs and BOECs. These findings provide support for the restoration of cell surface BMPR-II with agents such as chloroquine as a potential therapeutic approach for heritable PAH
The resistance-compliance product of the pulmonary circulation varies in health and pulmonary vascular disease.
Pulmonary vascular resistance (PVR) is traditionally used to describe pulmonary hemodynamic characteristics. However, it does not take into account pulmonary artery compliance (Ca) or pulsatile flow. The product of PVR and Ca is known as RC time. Previous studies assert that the PVR-Ca relationship is fixed and RC time is constant between health and disease states. We hypothesized that RC time was not constant in health and pulmonary vascular disease. Right heart catheterizations performed in Papworth Hospital over a 6 year period were analyzed. Subjects were divided into those with normal pulmonary hemodynamics (NPH group; n = 156) and pulmonary arterial hypertension (PAH group; n = 717). RC time and the right ventricle (RV) oscillatory power fraction were calculated. RC time for the NPH group (0.47 ± 0.13 sec) is significantly lower than the PAH group (0.56 ± 0.16 sec; P < 0.0001). The RV oscillatory power fraction is lower in the NPH group (P < 0.0001). RC time correlates inversely with the RV oscillatory power fraction in each group. We conclude, there is an inverse relationship between PVR and Ca, however, this relationship is not always fixed. Consequently, RC time is significantly lower in health compared to disease with elevated pulmonary artery pressures. PAH leads to a decrease in cardiac efficiency
Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells.
The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity
Recommended from our members
Thromboembolic Risk in Hospitalized and Nonhospitalized COVID-19 Patients: A Self-Controlled Case Series Analysis of a Nationwide Cohort.
OBJECTIVE: To assess the associations between coronavirus disease 2019 (COVID-19) infection and thromboembolism including myocardial infarction (MI), ischemic stroke, deep vein thrombosis (DVT), and pulmonary embolism (PE). PATIENTS AND METHODS: A self-controlled case-series study was conducted covering the whole of Scotland's general population. The study population comprised individuals with confirmed (positive test) COVID-19 and at least one thromboembolic event between March 2018 and October 2020. Their incidence rates during the risk interval (5 days before to 56 days after the positive test) and the control interval (the remaining periods) were compared intrapersonally. RESULTS: Across Scotland, 1449 individuals tested positive for COVID-19 and experienced a thromboembolic event. The risk of thromboembolism was significantly elevated over the whole risk period but highest in the 7 days following the positive test (incidence rate ratio, 12.01; 95% CI, 9.91 to 14.56) in all included individuals. The association was also present in individuals not originally hospitalized for COVID-19 (incidence rate ratio, 4.07; 95% CI, 2.83 to 5.85). Risk of MI, stroke, PE, and DVT were all significantly higher in the week following a positive test. The risk of PE and DVT was particularly high and remained significantly elevated even 56 days following the test. CONCLUSION: Confirmed COVID-19 infection was associated with early elevations in risk with MI, ischemic stroke, and substantially stronger and prolonged elevations with DVT and PE both in hospital and community settings. Clinicians should consider thromboembolism, especially PE, among people with COVID-19 in the community
Recommended from our members
Clinical trial protocol for TRANSFORM-UK: A therapeutic open-label study of tocilizumab in the treatment of pulmonary arterial hypertension.
Our aim is to assess the safety and potential efficacy of a novel treatment paradigm in pulmonary arterial hypertension (PAH), immunomodulation by blocking interleukin-6 (IL6) signaling with the IL6 receptor antagonist, tocilizumab. Inflammation and autoimmunity are established as important in PAH pathophysiology. One of the most robust observations across multiple cohorts in PAH has been an increase in IL6, both in the lung and systemically. Tocilizumab is an IL-6 receptor antagonist established as safe and effective, primarily in rheumatoid arthritis, and has shown promise in scleroderma. In case reports where the underlying cause of PAH is an inflammatory process such as systemic lupus erythematosus, mixed connective tissue disease (MCTD), and Castleman's disease, there have been case reports of regression of PAH with tocilizumab. TRANSFORM-UK is an open-label study of intravenous (IV) tocilizumab in patients with group 1 PAH. The co-primary outcome measures will be safety and the change in resting pulmonary vascular resistance (PVR). Clinically relevant secondary outcome measurements include 6-minute walk distance, WHO functional class, quality of life score, and N-terminal pro-brain natriuretic peptide (NT-proBNP). If the data support a potentially useful therapeutic effect with an acceptable risk profile, the study will be used to power a Phase III study to properly address efficacy
- …