113 research outputs found

    Thyroid Hormone Sensitizes the Imprinting-Associated Induction of Biological Motion Preference in Domestic Chicks

    Get PDF
    Filial imprinting is associated with induction of predisposed preference to animations that bear visual features of Johansson's biological motion (BM), and the induction is limited to a few days after hatching. As thyroid hormone (3,5,3′-triiodothyronine, T3) plays a critical role in determining the sensitive period of imprinting, we examined if exogenously applied T3 (or iopanoic acid, IOP; a selective inhibitor for converting enzymes) could also sensitize (or desensitize) the BM induction. Chicks were trained by using a non-BM stimulus (rotating red toy) according to a conventional imprinting procedure. Trained chicks were tested for preference to a point-light BM animation (walking chick) over a non-BM animation (linear motion), and for the preference for the familiarized stimulus (red toy) over an unfamiliar one (yellow toy). In 1-day chicks, those injected with IOP showed significantly lower scores than controls on both BM and imprinting tests. In 4-days chicks, those injected with T3 showed higher scores than control, but the difference in BM score was not significant. Imprinting and the accompanying T3 surge may be necessary for the predisposed BM preference to appear in 1-day chicks. Even after the conventional sensitive period is over, exogenous T3 can partly re-sensitize the BM preference as it does imprinting

    The Molecular Outflows in the rho Ophiuchi Main Cloud: Implications For Turbulence Generation

    Full text link
    We present the results of CO (J=3-2) and CO (J=1-0) mapping observations toward the active cluster forming clump, L1688, in the rho Ophiuchi molecular cloud. From the CO (J=3-2) and CO (J=1-0) data cubes, we identify five outflows, whose driving sources are VLA 1623, EL 32, LFAM 26, EL 29, and IRS 44. Among the identified outflows, the most luminous outflow is the one from the prototypical Class 0 source, VLA 1623. We also discover that the EL 32 outflow located in the Oph B2 region has very extended blueshifted and redshifted lobes with wide opening angles. This outflow is most massive and have the largest momentum among the identified outflows in the CO (J=1-0) map. We estimate the total energy injection rate due to the molecular outflows identified by the present and previous studies to be about 0.2 L_solar, larger than or at least comparable to the turbulence dissipation rate [~(0.03 - 0.1) L_solar]. Therefore, we conclude that the protostellar outflows are likely to play a significant role in replenishing the supersonic turbulence in this clump.Comment: 37 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Evidence For Cloud-Cloud Collision and Parsec-Scale Stellar Feedback Within the L1641-N Region

    Full text link
    We present high spatial resolution 12^{12}CO (J=10J=1-0) images taken by the Nobeyama 45m telescope toward a 48×4848' \times 48' area including the L1641-N cluster. The effective spatial resolution of the maps is 21"21", corresponding to 0.04 pc at a distance of 400 pc. A recent 1.1 mm dust continuum map reveals that the dense gas is concentrated in several thin filaments. We find that a few dust filaments are located at the parts where 12^{12}CO (J=10J=1-0) emission drops sharply. Furthermore, the filaments have two-components with different velocities. The velocity difference between the two-components is about 3 km s1^{-1}, corresponding to a Mach number of 10, significantly larger than the local turbulent velocity in the cloud. These facts imply that the collision of the two components (hereafter, the cloud-cloud collision) possibly contributed to the formation of these filaments. Since the two components appear to overlap toward the filaments on the plane of the sky, the collision may have occurred almost along the line of sight. Star formation in the L1641-N cluster was probably triggered by such a collision. We also find several parsec-scale CO shells whose centers are close to either the L1641-N cluster or V 380 Ori cluster. We propose that these shells were created by multiple winds and/or outflows from cluster YSOs, i.e., "protocluster winds." One exceptional dust filament located at the western cloud edge lies along a shell; it is presumably a part of the expanding shell. Both the cloud-cloud collision and protocluster winds are likely to influence the cloud structure and kinematics in this region.Comment: 44 pages, 12 figures, submitted to Ap
    corecore