8 research outputs found

    Evaluation of ChatGPT-Generated Differential Diagnosis for Common Diseases With Atypical Presentation: Descriptive Research

    No full text
    Abstract BackgroundThe persistence of diagnostic errors, despite advances in medical knowledge and diagnostics, highlights the importance of understanding atypical disease presentations and their contribution to mortality and morbidity. Artificial intelligence (AI), particularly generative pre-trained transformers like GPT-4, holds promise for improving diagnostic accuracy, but requires further exploration in handling atypical presentations. ObjectiveThis study aimed to assess the diagnostic accuracy of ChatGPT in generating differential diagnoses for atypical presentations of common diseases, with a focus on the model’s reliance on patient history during the diagnostic process. MethodsWe used 25 clinical vignettes from the Journal of Generalist Medicine ResultsChatGPT’s diagnostic accuracy decreased with an increase in atypical presentation. For category 1 (C1) cases, the concordance rates were 17% (n=1) for the top 1 and 67% (n=4) for the top 5. Categories 3 (C3) and 4 (C4) showed a 0% concordance for top 1 and markedly lower rates for the top 5, indicating difficulties in handling highly atypical cases. The χ2χ1Pχ1P ConclusionsChatGPT-4 demonstrates potential as an auxiliary tool for diagnosing typical and mildly atypical presentations of common diseases. However, its performance declines with greater atypicality. The study findings underscore the need for AI systems to encompass a broader range of linguistic capabilities, cultural understanding, and diverse clinical scenarios to improve diagnostic utility in real-world settings

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider: Report to Snowmass 2021

    No full text
    International audienceThe International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider:Report to Snowmass 2021

    No full text

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider:Report to Snowmass 2021

    No full text

    The International Linear Collider: Report to Snowmass 2021

    No full text
    International audienceThe International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community
    corecore