38 research outputs found

    Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    Get PDF
    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure

    Axonal Projections From the Middle Temporal Area in the Common Marmoset

    Get PDF
    Neural activity in the middle temporal (MT) area is modulated by the direction and speed of motion of visual stimuli. The area is buried in a sulcus in the macaque, but exposed to the cortical surface in the marmoset, making the marmoset an ideal animal model for studying MT function. To better understand the details of the roles of this area in cognition, underlying anatomical connections need to be clarified. Because most anatomical tracing studies in marmosets have used retrograde tracers, the axonal projections remain uncharacterized. In order to examine axonal projections from MT, we utilized adeno-associated viral (AAV) tracers, which work as anterograde tracers by expressing either green or red fluorescent protein in infected neurons. AAV tracers were injected into three sites in MT based on retinotopy maps obtained via in vivo optical intrinsic signal imaging. Brains were sectioned and divided into three series, one for fluorescent image scanning and two for myelin and Nissl substance staining to identify specific brain areas. Overall projection patterns were similar across the injections. MT projected to occipital visual areas V1, V2, V3 (VLP) and V4 (VLA) and surrounding areas in the temporal cortex including MTC (V4T), MST, FST, FSTv (PGa/IPa) and TE3. There were also projections to the dorsal visual pathway, V3A (DA), V6 (DM) and V6A, the intraparietal areas AIP, LIP, MIP, frontal A4ab and the prefrontal cortex, A8aV and A8C. There was a visuotopic relationship with occipital visual areas. In a marmoset in which two tracer injections were made, the projection targets did not overlap in A8aV and AIP, suggesting topographic projections from different parts of MT. Most of these areas are known to send projections back to MT, suggesting that they are reciprocally connected with it

    Successful Surgical Treatment of a Spontaneous Rupture of the Esophagus Diagnosed Two Days after Onset

    Get PDF
    Esophageal perforation is a relatively uncommon disease with a high rate of mortality and morbidity. Delay in the diagnosis and treatment occurs in more than 50% of cases, leading to a mortality rate of 40–60%. Primary repair is generally considered the gold standard for patients who present within the first 24 h following perforation of the esophagus. In this paper, we present a case of successful surgical treatment of spontaneous rupture of the esophagus that was diagnosed 2 days after onset. The patient was a 42-year-old man admitted to internal medicine with a diagnosis of pleuritis and complaining of chest and back pain. The next day, computed tomography revealed left-sided pleural effusion and mediastinal emphysema. An esophagogram revealed extravasation of the contrast medium from the lower left esophagus to the mediastinal cavity. These results confirmed a rupture of the esophagus, and an emergency left thoracotomy was performed. The perforation was repaired with a single-layered closure and was covered with elevated great omentum obtained by laparotomy. The patient was discharged 23 days after the first surgery. In conclusion, primary repair surgery must be selected as the best treatment beyond 24 h if the patient's general state was stable and there was no evidence of clinical sepsis

    A Postnatal Critical Period for Orientation Plasticity in the Cat Visual Cortex

    Get PDF
    Orientation selectivity of primary visual cortical neurons is an important requisite for shape perception. Although numerous studies have been previously devoted to a question of how orientation selectivity is established and elaborated in early life, how the susceptibility of orientation plasticity to visual experience changes in time remains unclear. In the present study, we showed a postnatal sensitive period profile for the modifiability of orientation selectivity in the visual cortex of kittens reared with head-mounted goggles for stable single-orientation exposure. When goggle rearing (GR) started at P16-P30, 2 weeks of GR induced a marked over-representation of the exposed orientation, and 2 more weeks of GR consolidated the altered orientation maps. GR that started later than P50, in turn, induced the under-representation of the exposed orientation. Orientation plasticity in the most sensitive period was markedly suppressed by cortical infusion of NMDAR antagonist. The present study reveals that the plasticity and consolidation of orientation selectivity in an early life are dynamically regulated in an experience-dependent manner

    The Japanese Clinical Practice Guideline for acute kidney injury 2016

    Get PDF
    Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention are necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search

    Distribution of Neurons responsive to a Uniform Surface in the Visual Cortex of the Cat

    No full text
    Object images on the retina can be described as combination of contours and surfaces surrounded by them. Neuronal activity in the early visual cortex has been extensively studied from the standpoint of contour representation. On the other hand, representation of the interior of a surface surrounded by a contour is much less well understood. Several studies have identified neurons activated by a uniform surface covering their receptive fields, but their distribution within the cortex is not yet known. The aim of the present study was to obtain a better understanding of the distribution of such neurons in the visual cortex. Using optical imaging of intrinsic signals, they found that there are a group of surface-responsive regions located in area 18, along the area 17/18 border, that tend to overlap with the singular points of the orientation-preference map. Extracellular recordings confirmed that neurons responsive to uniform plane stimuli are accumulated in these regions. Such neurons also existed outside the surface-responsive regions around the singular points. These results suggest that there exists a functional organization related to the representation of a uniform surface in the early visual cortex
    corecore