12 research outputs found

    Glucocorticoid Impaired the Wound Healing Ability of Endothelial Progenitor Cells by Reducing the Expression of CXCR4 in the PGE2 Pathway

    Get PDF
    Background: Endothelial progenitor cells (EPCs) can be used to treat ischemic disease in cell-based therapy owing to their neovascularization potential. Glucocorticoids (GCs) have been widely used as strong anti-inflammatory reagents. However, despite their beneficial effects, side effects, such as impairing wound healing are commonly reported with GC-based therapy, and the effects of GC therapy on the wound healing function of EPCs are unclear.Methods: In this study, we investigated how GC treatment affects the characteristics and wound healing function of EPCs.Results: We found that GC treatment reduced the proliferative ability of EPCs. In addition, the expression of CXCR4 was dramatically impaired, which suppressed the migration of EPCs. A transplantation study in a flap mouse model revealed that GC-treated EPCs showed a poor homing ability to injured sites and a low activity for recruiting inflammatory cells, which led to wound healing dysfunction. Impairment of prostaglandin E2 (PGE2) synthases, cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) were identified as being involved in the GC-induced impairment of the CXCR4 expression in EPCs. Treatment with PGE2 rescued the expression of CXCR4 and restored the migration ability of GC-treated EPCs. In addition, the PGE2 signal that activated the PI3K/AKT pathway was identified to be involved in the regulation of CXCR4 in EPCs under the effects of GCs. In addition, similar negative effects of GCs were observed in EPCs under hypoxic conditions. Under hypoxic conditions, GCs independently impaired the PGE2 and HIF2α pathways, which downregulated the expression of CXCR4 in EPCs. Our findings highlighted the influences of GCs on the characteristics and functions of EPCs, suggesting that the use of EPCs for autologous cell transplantation in patients who have used GCs for a long time should be considered carefully

    Glucocorticoid Impaired the Wound Healing Ability of Endothelial Progenitor Cells by Reducing the Expression of CXCR4 in the PGE2 Pathway

    Get PDF
    Background: Endothelial progenitor cells (EPCs) can be used to treat ischemic disease in cell-based therapy owing to their neovascularization potential. Glucocorticoids (GCs) have been widely used as strong anti-inflammatory reagents. However, despite their beneficial effects, side effects, such as impairing wound healing are commonly reported with GC-based therapy, and the effects of GC therapy on the wound healing function of EPCs are unclear.Methods: In this study, we investigated how GC treatment affects the characteristics and wound healing function of EPCs.Results: We found that GC treatment reduced the proliferative ability of EPCs. In addition, the expression of CXCR4 was dramatically impaired, which suppressed the migration of EPCs. A transplantation study in a flap mouse model revealed that GC-treated EPCs showed a poor homing ability to injured sites and a low activity for recruiting inflammatory cells, which led to wound healing dysfunction. Impairment of prostaglandin E2 (PGE2) synthases, cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) were identified as being involved in the GC-induced impairment of the CXCR4 expression in EPCs. Treatment with PGE2 rescued the expression of CXCR4 and restored the migration ability of GC-treated EPCs. In addition, the PGE2 signal that activated the PI3K/AKT pathway was identified to be involved in the regulation of CXCR4 in EPCs under the effects of GCs. In addition, similar negative effects of GCs were observed in EPCs under hypoxic conditions. Under hypoxic conditions, GCs independently impaired the PGE2 and HIF2α pathways, which downregulated the expression of CXCR4 in EPCs. Our findings highlighted the influences of GCs on the characteristics and functions of EPCs, suggesting that the use of EPCs for autologous cell transplantation in patients who have used GCs for a long time should be considered carefully

    The Japanese Clinical Practice Guideline for acute kidney injury 2016

    Get PDF
    Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention are necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search

    Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests

    No full text
    Falling is a common problem in the growing elderly population, and fall-risk assessment systems are needed for community-based fall prevention programs. In particular, the timed up and go test (TUG) is the clinical test most often used to evaluate elderly individual ambulatory ability in many clinical institutions or local communities. This study presents an improved leg tracking method using a laser range sensor (LRS) for a gait measurement system to evaluate the motor function in walk tests, such as the TUG. The system tracks both legs and measures the trajectory of both legs. However, both legs might be close to each other, and one leg might be hidden from the sensor. This is especially the case during the turning motion in the TUG, where the time that a leg is hidden from the LRS is longer than that during straight walking and the moving direction rapidly changes. These situations are likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve these problems, a novel data association considering gait phase and a Catmull–Rom spline-based interpolation during the occlusion are proposed. From the experimental results with young people, we confirm   that the proposed methods can reduce the chances of false tracking. In addition, we verify the measurement accuracy of the leg trajectory compared to a three-dimensional motion analysis system (VICON)

    A novel infrared laser device that measures multilateral parameters of stepping performance for assessment of fall risk in elderly individuals [corrected].

    Get PDF
    Avoiding falls requires fast and appropriate step responses in real-life situations. We developed a step-tracking device that uses an infrared laser sensor for convenient assessment of stepping performance, including concurrent assessment of temporal and spatial parameters. In the present study, we created a new index for assessment of fall risk that uses step speed and accuracy measurements. The purpose of this study was to determine whether the new index could discriminate between elderly individuals with different risks of falling

    Gait Measurement System for the Multi-Target Stepping Task Using a Laser Range Sensor

    Get PDF
    For the prevention of falling in the elderly, gait training has been proposed using tasks such as the multi-target stepping task (MTST), in which participants step on assigned colored targets. This study presents a gait measurement system using a laser range sensor for the MTST to evaluate the risk of falling. The system tracks both legs and measures general walking parameters such as stride length and walking speed. Additionally, it judges whether the participant steps on the assigned colored targets and detects cross steps to evaluate cognitive function. However, situations in which one leg is hidden from the sensor or the legs are close occur and are likely to lead to losing track of the legs or false tracking. To solve these problems, we propose a novel leg detection method with five observed leg patterns and global nearest neighbor-based data association with a variable validation region based on the state of each leg. In addition, methods to judge target steps and detect cross steps based on leg trajectory are proposed. From the experimental results with the elderly, it is confirmed that the proposed system can improve leg-tracking performance, judge target steps and detect cross steps with high accuracy
    corecore