135 research outputs found

    Renin-Angiotensin System Hyperactivation Can Induce Inflammation and Retinal Neural Dysfunction

    Get PDF
    The renin-angiotensin system (RAS) is a hormone system that has been classically known as a blood pressure regulator but is becoming well recognized as a proinflammatory mediator. In many diverse tissues, RAS pathway elements are also produced intrinsically, making it possible for tissues to respond more dynamically to systemic or local cues. While RAS is important for controlling normal inflammatory responses, hyperactivation of the pathway can cause neural dysfunction by inducing accelerated degradation of some neuronal proteins such as synaptophysin and by activating pathological glial responses. Chronic inflammation and oxidative stress are risk factors for high incidence vision-threatening diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. In fact, increasing evidence suggests that RAS inhibition may actually prevent progression of various ocular diseases including uveitis, DR, AMD, and glaucoma. Therefore, RAS inhibition may be a promising therapeutic approach to fine-tune inflammatory responses and to prevent or treat certain ocular and neurodegenerative diseases

    Regulation of Posttranscriptional Modification as a Possible Therapeutic Approach for Retinal Neuroprotection

    Get PDF
    Understanding pathogenesis at the molecular level is the first step toward developing new therapeutic approaches. Here, we review the molecular mechanisms of visual dysfunction in two common diseases, innate chorioretinal inflammation and diabetic retinopathy, and the role of the ubiquitin-proteasome system (UPS) in both processes. In innate chorioretinal inflammation, interleukin-6 family ligands induce STAT3 activation in photoreceptors, which causes UPS-mediated excessive degradation of the visual substance, rhodopsin. In diabetic retinopathy, angiotensin II type 1 receptor (AT1R) signaling activates ERK in the inner layers of the retina, causing UPS-mediated excessive degradation of the synaptic vesicle protein, synaptophysin. This latter effect may decrease synaptic activity, in turn adversely affecting neuronal survival. Both mechanisms involve increased UPS activity and the subsequent excessive degradation of a protein required for visual function. Finally, we review the therapeutic potential of regulating the UPS to protect tissue function, citing examples from clinical applications in other medical fields

    Neural Degeneration in the Retina of the Streptozotocin-Induced Type 1 Diabetes Model

    Get PDF
    Diabetic retinopathy, a vision-threatening disease, has been regarded as a vascular disorder. However, impaired oscillatory potentials (OPs) in the electroretinogram (ERG) and visual dysfunction are recorded before severe vascular lesions appear. Here, we review the molecular mechanisms underlying the retinal neural degeneration observed in the streptozotocin-(STZ-) induced type 1 diabetes model. The renin-angiotensin system (RAS) and reactive oxygen species (ROS) both cause OP impairment and reduced levels of synaptophysin, a synaptic vesicle protein for neurotransmitter release, most likely through excessive protein degradation by the ubiquitin-proteasome system. ROS also decrease brain-derived neurotrophic factor (BDNF) and inner retinal neuronal cells. The influence of both RAS and ROS on synaptophysin suggests that RAS-ROS crosstalk occurs in the diabetic retina. Therefore, suppressors of RAS or ROS, such as angiotensin II type 1 receptor blockers or the antioxidant lutein, respectively, are potential candidates for neuroprotective and preventive therapies to improve the visual prognosis

    Evaluation of AAV-DJ vector for retinal gene therapy

    Get PDF
    Purpose The most common virus vector used in gene therapy research for ophthalmologic diseases is the adeno-associated virus (AAV) vector, which has been used successfully in a number of preclinical and clinical studies. It is important to evaluate novel AAV vectors in animal models for application of clinical gene therapy. The AAV-DJ (type 2/type 8/type 9 chimera) was engineered from shuffling eight different wild-type native viruses. In this study, we investigated the efficiency of gene transfer by AAV-DJ injections into the retina. Methods One microliter of AAV-2-CAGGS-EGFP or AAV-DJ-CAGGS-EGFP vector at a titer of 1.4 × 10e12 vg/ml was injected intravitreally or subretinally in each eye of C57BL/6 mice. We evaluated the transduction characteristics of AAV-2 and -DJ vectors using fluorescence microscopy and electroretinography. Results The results confirmed that AAV-DJ could deeply transfer gene to photoreceptor layer with intravitreal injection and has an efficient gene transfer to various cell types especially the Mueller cells in the retina. Retinal function was not affected by AAV-DJ infection or ectopic EGFP expression. Conclusions The AAV-DJ vector efficiently induces the reporter gene in both the inner and outer murine retina without functional toxicity. These data indicated that the AAV-DJ vector is a useful tool for the gene therapy research targeting retinal disorders

    Bisphenol A exposure triggers endoplasmic reticulum stress pathway leading to ocular axial elongation in mice

    Get PDF
    BackgroundOcular axial elongation is one of the features of myopia progression. Endoplasmic reticulum (ER) stress-associated scleral remodeling plays an important role in ocular axial elongation. Bisphenol A (BPA) is one of the most common environmental pollutants and is known to affect various human organs through ER stress. However, whether BPA exerts an effect on scleral remodeling remains unknown. The purpose of this study was to determine the effect of BPA on the development of myopia and scleral ER stress.MethodsBPA was administered by intraperitoneal injection. 4-PBA was administered as an endoplasmic reticulum stress inhibitor by eye drops. Refraction and axial length were measured by refractometer and SD-OCT system. Western blot was performed to detect the expression level of ER stress-related proteins.ResultsBPA-administered mice exhibit axial elongation and myopic refractive shift with endoplasmic reticulum stress in the sclera. BPA administration activated scleral PERK and ATF6 pathways, and 4-PBA eye drops attenuated ER stress response and suppressed myopia progression.ConclusionBPA controlled axial elongation during myopia development in a mouse model by inducing scleral ER stress and activation of the PERK/ATF6 pathway. 4-PBA eye drops as ER stress inhibitor suppressed BPA-induced myopia development

    Retinal dysfunction induced in a mouse model of unilateral common carotid artery occlusion

    Get PDF
    Background Retinal ischemic stresses are associated with the pathogenesis of various retinal vascular diseases. To investigate pathological mechanisms of retinal ischemia, reproducible, robust and clinically significant experimental rodent models are highly needed. Previously, we established a stable murine model of chronic hypoperfusion retinal injuries by permanent unilateral common carotid artery occlusion (UCCAO) and demonstrated chronic pathological processes in the ischemic retina after the occlusion; however, retinal functional deficits and other acute retinal ischemic injuries by UCCAO still remain obscure. In this study, we attempted to examine retinal functional changes as well as acute retinal ischemic alterations such as retinal thinning, gliosis and cell death after UCCAO. Methods Adult mice (male C57BL/6, 6–8 weeks old) were subjected to UCCAO in the right side, and retinal function was primarily measured using electroretinography for 14 days after the surgery. Furthermore, retinal thinning, gliosis and cell death were investigated using optical coherence tomography, immunohistochemistry and TUNEL assay, respectively. Results Functional deficits in the unilateral right retina started to be seen 7 days after the occlusion. Specifically, the amplitude of b-wave dramatically decreased while that of a-wave was slightly affected. 14 days after the occlusion, the amplitudes of both waves and oscillatory potentials were significantly detected decreased in the unilateral right retina. Even though a change in retinal thickness was not dramatically observed among all the eyes, retinal gliosis and cell death in the unilateral right retina were substantially observed after UCCAO. Conclusions Along with previous retinal ischemic results in this model, UCCAO can stimulate retinal ischemia leading to functional, morphological and molecular changes in the retina. This model can be useful for the investigation of pathological mechanisms for human ischemic retinopathies and furthermore can be utilized to test new drugs for various ischemic ocular diseases

    High Myopia and Its Associated Factors in JPHC-NEXT Eye Study: A Cross-Sectional Observational Study

    Get PDF
    The increasing prevalence of high myopia has been noted. We investigated the epidemiological characteristics and the related factors of high myopia in a Japanese adult population. Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Eye Study was performed in Chikusei-city, a rural area in mid-east Japan, between 2013 and 2015. A cross-sectional observational analysis was conducted to investigate prevalence and related factors of high myopia. A total of 6101 participants aged ≥40 years without a history of ocular surgeries was included. High myopia was defined as a spherical equivalent refraction of ≤-6.00 diopters according to the American Academy of Ophthalmology. Potential high myopia-related factors included intraocular pressure (IOP), corneal structure, corneal endothelial cell density, age, height, body mass index, heart rate, blood pressure, biochemical profile, and current history of systemic and ocular disorders. The odds ratios of high myopia were estimated using the logistic regression models adjusted for the associated factors. The prevalence of high myopia was 3.8% in males and 5.9% in females with a significant difference. Age was inversely associated, IOP was positively associated, and none of other factors were associated with high myopia in both sexes. In conclusion, only age and IOP were associated with high myopia in this community-based sample

    Relationship between nerve fiber layer defect and the presence of epiretinal membrane in a Japanese population: The JPHC-NEXT Eye Study

    Get PDF
    The study subjects were residents of Chikusei city, Japan, aged 40 years or older who attended annual health check-up programs and participated in the JPHC-NEXT Eye Study which performed non-mydriatic fundus photography of both eyes. The relationship of glaucomatous fundus changes such as optic disc cupping (cup to disc ratio ≥ 0.7) and retinal nerve fiber layer defect (NFLD) with the presence of epiretinal membrane (ERM) were examined cross-sectionally. A total of 1990 persons gave consent to participate in this study in 2013. The overall prevalence of ERM was 12.9%. Of these, 1755 had fundus photographs of sufficient quality and no history of intraocular surgery (mean age: 62.3 ± 10.0 years). After adjusting for age, sex and refractive error, NFLD was positively associated with the presence of ERM (odds ratio [OR]: 2.48; 95% confidence interval [CI]: 1.24, 4.96; P = 0.010), but optic disc cupping was not (OR: 1.33; CI: 0.71, 2.48; P = 0.37). The results did not necessarily suggest an association between glaucoma and ERM, but indicated an association between NFLD and ERM

    iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: A Follow-Up Study

    Get PDF
    Phototransduction is accomplished in the retina by photoreceptor neurons and retinal pigment epithelium (RPE) cells. Photoreceptors rely heavily on the RPE, and death or dysfunction of RPE is characteristic of age-related macular degeneration (AMD), a very common neurodegenerative disease for which no cure exists. RPE replacement is a promising therapeutic intervention for AMD, and large numbers of RPE cells can be generated from pluripotent stem cells. However, questions persist regarding iPSC-derived RPE (iPS-RPE) viability, immunogenicity, and tumorigenesis potential. We showed previously that iPS-RPE prevent photoreceptor atrophy in dystrophic rats up until 24 weeks after implantation. In this follow-up study, we longitudinally monitored the same implanted iPS-RPE, in the same animals. We observed no gross abnormalities in the eyes, livers, spleens, brains, and blood in aging rats with iPSC-RPE grafts. iPS-RPE cells that integrated into the subretinal space outlived the photoreceptors and survived for as long as 2 1/2 years while nonintegrating RPE cells were ingested by host macrophages. Both populations could be distinguished using immunohistochemistry and electron microscopy. iPSC-RPE could be isolated from the grafts and maintained in culture; these cells also phagocytosed isolated photoreceptor outer segments. We conclude that iPS-RPE grafts remain viable and do not induce any obvious associated pathological changes
    corecore