176 research outputs found

    Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures

    Get PDF
    Highly stretchable sensors that can detect large strains are useful in deformable systems, such as soft robots and wearable devices. For stretchable strain sensors, two types of sensing methods exist, namely, resistive and capacitive. Capacitive sensing has several advantages over the resistive type, such as high linearity, repeatability, and low hysteresis. However, the sensitivity (gauge factor) of capacitive strain sensors is theoretically limited to 1, which is much lower than that of the resistive-type sensors. The objective of this study is to improve the sensitivity of highly stretchable capacitive strain sensors by integrating hierarchical auxetic structures into them. Auxetic structures have a negative Poisson\u27s ratio that causes increase in change in capacitance with applied strains, and thereby improving sensitivity. In order to prove this concept, we fabricate and characterize two sensor samples with planar dimensions 60 mm × 16 mm. The samples have an acrylic elastomer (3M, VHB 4905) as the dielectric layer and a liquid metal (eutectic gallium-indium) for electrodes. On both sides of the sensor samples, hierarchical auxetic structures made of a silicone elastomer (Dow Corning, Sylgard 184) are attached. The samples are tested under strains up to 50% and the experimental results show that the sensitivity of the sensor with the auxetic structure exceeds the theoretical limit. In addition, it is observed that the sensitivity of this sensor is roughly two times higher than that of a sensor without the auxetic structure, while maintaining high linearity (R2 = 0.995), repeatability (≥10^4 cycles), and low hysteresis

    Red fluorescent cAMP indicator with increased affinity and expanded dynamic range

    Get PDF
    cAMP is one of the most important second messengers in biological processes. Cellular dynamics of cAMP have been investigated using a series of fluorescent indicators; however, their sensitivity was sub-optimal for detecting cAMP dynamics at a low concentration range, due to a low ligand affinity and/or poor dynamic range. Seeking an indicator with improved detection sensitivity, we performed insertion screening of circularly permuted mApple, a red fluorescent protein, into the cAMP-binding motif of PKA regulatory subunit Iα and developed an improved cAMP indicator named R-FlincA (Red Fluorescent indicator for cAMP). Its increased affinity (Kd = 0.3 μM) and expanded dynamic range (860% at pH 7.2) allowed the detection of subtle changes in the cellular cAMP dynamics at sub-μM concentrations, which could not be easily observed with existing indicators. Increased detection sensitivity also strengthened the advantages of using R-FlincA as a red fluorescent indicator, as it permits a series of applications, including multi-channel/function imaging of multiple second messengers and combinatorial imaging with photo-manipulation. These results strongly suggest that R-FlincA is a promising tool that accelerates cAMP research by revealing unobserved cAMP dynamics at a low concentration range

    LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer.

    Get PDF
    Colorectal cancer (CRC) is a serious public health problem and non-invasive biomarkers improving diagnosis or therapy are strongly required. Circulating cell-free DNA (cfDNA) has been a promising target for this purpose. In this study, we evaluated the potential of long interspersed nuclear element-1 (LINE-1) hypomethylation as a blood biomarker for CRC. LINE-1 hypomethylation level in plasma cfDNA in 114 CRC patients was retrospectively examined by absolute quantitative analysis of methylated alleles real-time PCR, and was expressed using LINE-1 hypomethylation index (LHI) [unmethylated copy number/ (methylated copy number + unmethylated copy number)]. Greater LHI values indicated enhanced hypomethylation. In our clinicopathological analysis, CRC patients with large tumors (≥6.0 cm), advanced N stage (≥2), and distant metastasis (M1) had statistically significantly higher cfDNA LHI than other CRC patients, suggesting cfDNA LHI as a disease progression biomarker for CRC. Furthermore, early stage I/II (n = 57) as well as advanced stage III/IV (n =57) CRC patients had significantly higher cfDNA LHI than healthy donors (n=53) [stage I/II: median 0.369 (95% confidence interval, 0.360-0.380) vs. 0.332 (0.325-0.339), P \u3c 0.0001; stage III/IV: 0.372 (0.365-0.388) vs. 0.332 (0.325-0.339), P \u3c 0.0001]. The receiver operating characteristic analysis showed that cfDNA LHI had the detection capacity of CRC with area under the curve(AUC) of 0.79 and 0.83 in stage I/II and stage III/IV CRC patients, respectively. The present study demonstrated for the first time the potential of plasma cfDNA LHI as a novel biomarker for CRC, particularly for early stage detection

    Effects of Fe fertilizer eluate on the growth of Sargassum horneri at the germling and immature stages

    Get PDF
    To aid in the restoration of coastal barren ground areas, it is important to clarify the effects of chelated iron on the growth of seaweed. In particular, for the further development of practical methods to promote seaweed growth, Fe-binding organic ligands, such as humic substances (HSs) composed of humus materials, rather than Fe-binding inorganic ligands, such as ethylenediaminetetraacetic acid (EDTA), should be investigated. In this study, the effects of an Fe fertilizer, made from HSs and steelmaking slag, on the growth of the brown alga Sargassum horneri at the germling and immature stages were examined. The addition of the Fe fertilizer eluate containing Fe organic ligand complexes clearly promoted the growth of S. horneri at the germling and immature stages. It was also clear that the effect of Fe concentration in the Fe fertilizer eluate on the growth rate was almost the same as that of Fe–EDTA. Moreover, the addition of the Fe fertilizer eluate had a great effect on the brown color of S. horneri thalli and promoted the increased content of photosynthetic pigments, such as chlorophyll a. Based on these experimental results, the application of the Fe fertilizer containing Fe organic ligand complexes is expected to become an effective method for the restoration of the barren ground phenomenon in Fe-deficient coastal areas. © 2015 Springer Science+Business Media DordrechtEmbargo Period 12 month
    corecore