2 research outputs found

    Terapia por lĂĄser de baja potencia: consideraciones Ăłptico-fĂ­sicas y biolĂłgicas determinantes en su aplicaciĂłn clĂ­nica.

    Full text link
    Objetivos : Analizar la distribuciĂłn de energĂ­a en un tejido cuando se emplea terapia por lĂĄser de baja potencia y estudiar las especificaciones mĂ­nimas de equipos de terapia lĂĄser para estimar la dosis. Material y mĂ©todos: Se ha empleado el mĂ©todo de Monte Carlo para obtener la distribuciĂłn de energĂ­a absorbida por la piel para dos tipos de lĂĄser y la teorĂ­a de la difusiĂłn para estimar la longitud de penetraciĂłn y el recorrido libre medio. Se ha estudiado la variaciĂłn de esa distribuciĂłn en funciĂłn de la raza (caucĂĄsico, asiĂĄtico, afroamericano) y para dos localizaciones anatĂłmicas distintas. Se ha analizado la informaciĂłn facilitada por diversos fabricantes de equipos comerciales para determinar si es necesario adaptar la dosimetrĂ­a recomendada. Resultados: La radiaciĂłn lĂĄser infrarroja (810nm) se absorbe mayoritariamente en un espesor de piel de 1,9±0,2mm para caucĂĄsicos, entre 1,73±0,08mm (volar del antebrazo) y 1,80±0,11mm (palma) para asiĂĄticos y entre 1,25±0,09mm (volar del antebrazo) y 1,65±0,2mm (palma) para afroamericanos. El recorrido libre medio de la luz siempre es menor que 0,69±0,09mm. Para los equipos comerciales analizados la Ășnica caracterĂ­stica geomĂ©trica del haz lĂĄser que se menciona es la superficie que oscila entre 0,08 y 1cm2, pero no se especifica cĂłmo es la distribuciĂłn de energĂ­a, la divergencia del haz, forma de la secciĂłn transversal, etc. Conclusiones:Dependiendo del equipo de terapia por lĂĄser de baja potencia utilizado, el tipo de paciente y la zona a tratar, el clĂ­nico debe adaptar las dosis recomendadas. Abstract: Objectives: To analyze the distribution of energy deposited in a tissue when this is irradiated with a low power laser and to study the minimum characteristics that manufacturers of low power laser therapy equipments should include to estimate the dosage. Material and methods: Monte Carlo simulation was performed to determine the absorption location of the laser energy. The diffusion theory was used to estimate penetration depth and mean free path. Variation of this distribution was studied based on three different skin types (Caucasians, Asians and Afroamericans) and for two different anatomic locations: palm and volar forearm. Information given by several manufactures of low power laser therapy equipments has been analyzed. Results: Infrared (810 nm) laser radiation is mainly absorbed in a skin layer of thickness 1.9±0.2mm for Caucasians, from 1.73±0.08mm (volar forearm) to 1.80±0.11mm (palm) for Asians, and from 1.25±0.09mm (volar forearm) to 1.65±0.2mm (palm) for Afroamericans. The light mean free path is lower than 0.69±0.09mm for all cases. The laser beam characteristics (beam shape, energy distribution on a transversal section, divergence, incidence angle,etc.) are not usually specified by the manufacturers. Only beam size (ranging from 0.08 to 1cm2) is given in some cases. Discussion and conclusions: Depending on the low power laser therapy equipment, on the patient and on the anatomic area to be treated, the staff should adapt the recommended dosage for each individual case

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore