535 research outputs found

    Physicochemical properties of concentrated Martian surface waters

    Get PDF
    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions

    Experimental constraints on Li isotope fractionation during clay formation

    Get PDF
    Knowledge of the lithium (Li) isotope fractionation factor during clay mineral formation is a key parameter for Earth sys-tem models. This study refines our understanding of isotope fractionation during clay formation with essential implicationsfor the interpretation of field data and the global geochemical cycle of Li. We synthesised Mg-rich layer silicates (stevensiteand saponite) at temperatures relevant for Earth surface processes. The resultant solids were characterised by X-ray diffrac-tion (XRD) and Fourier-transform infrared spectroscopy (FT-IR) to confirm the mineralogy and crystallinity of the product.Bulk solid samples were treated with ammonium chloride to remove exchangeable Li in order to distinguish the Li isotopicfractionation between these sites and structural (octahedral) sites. Bulk solids, residual solids and exchangeable solutions wereall enriched in6Li compared to the initial solution. On average, the exchangeable solutions hadd7Li values 7?lower than theinitial solution. The average difference between the residual solid and initial solutiond7Li values (D7Liresidue-solution) for the syn-thesised layer silicates was?16.6 ±\pm 1.7?at 20?C, in agreement with modelling studies, extrapolations from high tempera-ture experimental data and field observations. Three bonding environments were identified from7Li-NMR spectra which werepresent in both bulk and residual solid7Li-NMR spectra, implying that some exchangeable Li remains after treatment withammonium chloride. The7Li-NMR peaks were assigned to octahedral, outer-sphere (interlayer and adsorbed) and pseudo-hexagonal (ditrigonal cavity) Li. By combining the7Li-NMR data with mass balance constraints we calculated a fractionationfactor, based on a Monte Carlo minimum misfit method, for each bonding environment. The calculated values are?21.5±\pm 1.1?,?0.2 ±\pm 1.9?and 15.0 ±\pm 12.3?for octahedral, outer-sphere and pseudo-hexagonal sites respectively (errors 1r).The bulk fractionation factor (D7Libulk-solution) is dependent on the chemistry of the initial solution. The higher the Na concen-tration in the initial solution the lower the bulkd7Li value. We suggest this is due to Na outcompeting Li for interlayer sitesand as interlayer Li has a highd7Li value relative to octahedral Li, increased Na serves to lower the bulkd7Li value. Threeexperiments conducted at higher pH exhibited lowerd7Li values in the residual solid. This could either be a kinetic effect,resulting from the higher reaction rate at high pH, or an equilibrium effect resulting from reduced Li incorporation in theresidual solid and/or a change in Li speciation in solution.This study highlights the power of7Li-NMR in experimental studies of clay synthesis to target site specific Li isotope frac-tionation factors which can then be used to provide much needed constraints on field processes

    Small Shelly Fossil Preservation and the Role of Early Diagenetic Redox in the Early Triassic

    Get PDF
    Minute fossils from a variety of different metazoan clades, collectively referred to as small shelly fossils, represent a distinctive taphonomic mode that is most commonly reported from the Cambrian Period. Lower Triassic successions of the western United States, deposited in the aftermath of the end-Permian mass extinction, provide an example of small shelly style preservation that significantly post-dates Cambrian occurrences. Glauconitized and phosphatized echinoderms and gastropods are preserved in the insoluble residues of carbonates from the Virgin Limestone Member of the Moenkopi Formation. Echinoderm plates, spines and other skeletal elements are preserved as stereomic molds; gastropods are preserved as steinkerns. All small shelly style fossils are preserved in the small size fractions of the residues (177 to 420 lm), which is consistent with the size selection of small shelly fossils in the Cambrian. Energy-dispersive X-ray spectra of individual fossils coupled with X-ray diffraction of residues confirm that the fossils are dominantly preserved by apatite and glauconite, and sometimes a combination of the two minerals. The nucleation of both of these minerals requires that pore water redox oscillated between oxic and anoxic conditions, which, in turn, implies that Lower Triassic carbonates periodically experienced oxygen depletion after deposition and during early diagenesis. Long-term oxygen depletion persisted through the Early Triassic, creating diagenetic conditions that were instrumental in the preservation of small shelly fossils in Triassic and, likely, Paleozoic examples

    Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction

    Get PDF
    Phases encountered in the hydration of monoclinic and trigonal anhydrous Fe2(SO4)3 and evaporation of Fe2(SO4)3 solutions at room temperature were determined using in situ and ex situ X-ray diffraction (XRD) under dynamic relative humidity (RH) control at room temperature (22–25 °C). Both monoclinic and trigonal forms of Fe2(SO4)3 remain anhydrous at 11% RH or below, and undergo the following phase evolution sequence: anhydrous Fe2(SO4)3 → (ferricopiapite, rhomboclase) → kornelite → paracoquimbite at RH between 33 and 53% as a function of time. Evaporation of aqueous Fe2(SO4)3 solutions at 40% < RH < 60% results in precipitation of ferricopiapite and rhomboclase during evaporation, followed by a transition to kornelite and then paracoquimbite. Evaporation at RH < 33% produced an amorphous ferric-sulfate phase. The presence of some iron sulfate hydrates and their stability under varying RH are not only determined by the final humidity level, but also the intermediate stages and hydration history (i.e., either ferricopiapite or paracoquimbite can be a stable phase at 62% RH depending on the hydration history). The sensitivity to humidity change and path-dependent transitions of ferric sulfates make them potentially valuable indicators of paleo-environmental conditions and past water activity on Mars. The phase relationships reported herein can help in understanding the diagenesis of ferric sulfate minerals, and are applicable to geochemical modeling of mineral solubility in multi-component systems, an endeavor hindered by the need for fundamental laboratory studies of iron sulfate hydrates

    Experimental constraints on Li isotope fractionation during clay formation

    Get PDF
    Knowledge of the lithium (Li) isotope fractionation factor during clay mineral formation is a key parameter for Earth sys-tem models. This study refines our understanding of isotope fractionation during clay formation with essential implicationsfor the interpretation of field data and the global geochemical cycle of Li. We synthesised Mg-rich layer silicates (stevensiteand saponite) at temperatures relevant for Earth surface processes. The resultant solids were characterised by X-ray diffrac-tion (XRD) and Fourier-transform infrared spectroscopy (FT-IR) to confirm the mineralogy and crystallinity of the product.Bulk solid samples were treated with ammonium chloride to remove exchangeable Li in order to distinguish the Li isotopicfractionation between these sites and structural (octahedral) sites. Bulk solids, residual solids and exchangeable solutions wereall enriched in6Li compared to the initial solution. On average, the exchangeable solutions hadd7Li values 7‰lower than theinitial solution. The average difference between the residual solid and initial solutiond7Li values (D7Liresidue-solution) for the syn-thesised layer silicates wasïżœ16.6 ± 1.7‰at 20ïżœC, in agreement with modelling studies, extrapolations from high tempera-ture experimental data and field observations. Three bonding environments were identified from7Li-NMR spectra which werepresent in both bulk and residual solid7Li-NMR spectra, implying that some exchangeable Li remains after treatment withammonium chloride. The7Li-NMR peaks were assigned to octahedral, outer-sphere (interlayer and adsorbed) and pseudo-hexagonal (ditrigonal cavity) Li. By combining the7Li-NMR data with mass balance constraints we calculated a fractionationfactor, based on a Monte Carlo minimum misfit method, for each bonding environment. The calculated values areïżœ21.5± 1.1‰,ïżœ0.2 ± 1.9‰and 15.0 ± 12.3‰for octahedral, outer-sphere and pseudo-hexagonal sites respectively (errors 1r).The bulk fractionation factor (D7Libulk-solution) is dependent on the chemistry of the initial solution. The higher the Na concen-tration in the initial solution the lower the bulkd7Li value. We suggest this is due to Na outcompeting Li for interlayer sitesand as interlayer Li has a highd7Li value relative to octahedral Li, increased Na serves to lower the bulkd7Li value. Threeexperiments conducted at higher pH exhibited lowerd7Li values in the residual solid. This could either be a kinetic effect,resulting from the higher reaction rate at high pH, or an equilibrium effect resulting from reduced Li incorporation in theresidual solid and/or a change in Li speciation in solution.This study highlights the power of7Li-NMR in experimental studies of clay synthesis to target site specific Li isotope frac-tionation factors which can then be used to provide much needed constraints on field processes

    The Sedimentary Cycle on Early Mars

    Get PDF
    Two decades of intensive research have demonstrated that early Mars (2 Gyr) had an active sedimentary cycle, including well-preserved stratigraphic records, understandable within a source-to-sink framework with remarkable fidelity. This early cycle exhibits first-order similarities to (e.g., facies relationships, groundwater diagenesis, recycling) and first-order differences from (e.g., greater aeolian versus subaqueous processes, basaltic versus granitic provenance, absence of plate tectonics) Earth's record. Mars’ sedimentary record preserves evidence for progressive desiccation and oxidation of the surface over time, but simple models for the nature and evolution of paleoenvironments (e.g., acid Mars, early warm and wet versus late cold and dry) have given way to the view that, similar to Earth, different climate regimes on Mars coexisted on regional scales and evolved on variable timescales, and redox chemistry played a pivotal role. A major accomplishment of Mars exploration has been to demonstrate that surface and subsurface sedimentary environments were both habitable and capable of preserving any biological record

    Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo

    Get PDF
    Land clearing for crops, plantations and grazing results in anthropogenic burning of tropical forests and peatlands in Indonesia, where images of fire-generated aerosol plumes have been captured by the Multi-angle Imaging SpectroRadiometer (MISR) since 2001. Here we analyze the size, shape, optical properties, and age of distinct fire-generated plumes in Borneo from 2001–2009. The local MISR overpass at 10:30 a.m. misses the afternoon peak of Borneo fire emissions, and may preferentially sample longer plumes from persistent fires burning overnight. Typically the smoke flows with the prevailing southeasterly surface winds at 3–4 m s&lt;sup&gt;−1&lt;/sup&gt;, and forms ovoid plumes whose mean length, height, and cross-plume width are 41 km, 708 m, and 27% of the plume length, respectively. 50% of these plumes have length between 24 and 50 km, height between 523 and 993 m and width between 18% and 30% of plume length. Length and cross-plume width are lognormally distributed, while height follows a normal distribution. Borneo smoke plume heights are similar to previously reported plume heights, yet Borneo plumes are on average nearly three times longer than previously studied plumes. This could be due to sampling or to more persistent fires and greater fuel loads in peatlands than in other tropical forests. Plume area (median 169 km&lt;sup&gt;2&lt;/sup&gt;, with 25th and 75th percentiles at 99 km&lt;sup&gt;2&lt;/sup&gt; and 304 km&lt;sup&gt;2&lt;/sup&gt;, respectively) varies exponentially with length, though for most plumes a linear relation provides a good approximation. The MISR-estimated plume optical properties involve greater uncertainties than the geometric properties, and show patterns consistent with smoke aging. Optical depth increases by 15–25% in the down-plume direction, consistent with hygroscopic growth and nucleation overwhelming the effects of particle dispersion. Both particle single-scattering albedo and top-of-atmosphere reflectance peak about halfway down-plume, at values about 3% and 10% greater than at the origin, respectively. The initially oblong plumes become brighter and more circular with time, increasingly resembling smoke clouds. Wind speed does not explain a significant fraction of the variation in plume geometry. We provide a parameterization of plume shape that can help atmospheric models estimate the effects of plumes on weather, climate, and air quality. Plume age, the age of smoke furthest down-plume, is lognormally distributed with a median of 2.8 h (25th and 75th percentiles at 1.3 h and 4.0 h), different from the median ages reported in other studies. Intercomparison of our results with previous studies shows that the shape, height, optical depth, and lifetime characteristics reported for tropical biomass burning plumes on three continents are dissimilar and distinct from the same characteristics of non-tropical wildfire plumes

    Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?

    Get PDF
    During El Niño years, fires in tropical forests and peatlands in equatorial Asia create large regional smoke clouds. We characterized the sensitivity of these clouds to regional drought, and we investigated their effects on climate by using an atmospheric general circulation model. Satellite observations during 2000–2006 indicated that El Niño-induced regional drought led to increases in fire emissions and, consequently, increases in aerosol optical depths over Sumatra, Borneo and the surrounding ocean. Next, we used the Community Atmosphere Model (CAM) to investigate how climate responded to this forcing. We conducted two 30 year simulations in which monthly fire emissions were prescribed for either a high (El Niño, 1997) or low (La Niña, 2000) fire year using a satellite-derived time series of fire emissions. Our simulations included the direct and semi-direct effects of aerosols on the radiation budget within the model. We assessed the radiative and climate effects of anthropogenic fire by analyzing the differences between the high and low fire simulations. Fire aerosols reduced net shortwave radiation at the surface during August–October by 19.1&amp;plusmn;12.9 W m&lt;sup&gt;&amp;minus;2&lt;/sup&gt; (10%) in a region that encompassed most of Sumatra and Borneo (90&amp;deg; E–120&amp;deg; E, 5&amp;deg; S–5&amp;deg; N). The reductions in net shortwave radiation cooled sea surface temperatures (SSTs) and land surface temperatures by 0.5&amp;plusmn;0.3 and 0.4&amp;plusmn;0.2 &amp;deg;C during these months. Tropospheric heating from black carbon (BC) absorption averaged 20.5&amp;plusmn;9.3 W m&lt;sup&gt;&amp;minus;2&lt;/sup&gt; and was balanced by a reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9&amp;plusmn;0.6 mm d&lt;sup&gt;&amp;minus;1&lt;/sup&gt; (10%). The vulnerability of ecosystems to fire was enhanced because the decreases in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning in the region intensifies drought stress during El Niño
    • 

    corecore