303 research outputs found
Liking the Same Things, but Doing Things Differently: Outcome Versus Compatibility in Partner Preferences for Joint Tasks
We propose a distinction between two types of interpersonal compatibility in determining partner preferences for joint tasks: outcome compatibility and strategic compatibility. We argue that these two types of compatibility correspond to preferences for similar and complementary task partners, respectively. Five studies support this distinction. A pilot study demonstrates that established scales for measuring attitudes and values (variables associated with similarity effects) capture more information about desired outcomes, whereas established scales for measuring dominance (the variable most widely associated with complementarity effects) capture more information about desired strategies. Studies 1a and 1b demonstrate that framing the same variable as either an outcome variable or a strategic variable can predict partner preference (i.e., similar or complementary). Finally, Studies 2a and 2b address why complementarity may offer a strategic advantage over similarity in task pursuit: complementarity allows two individuals with contrasting strategic preferences to “divide and conquer” tasks that require multiple strategies
Provenance analysis for sensemaking. IEEE Computer Graphics and Applications, 39 (6) . pp. 27-29. ISSN 0272-1716
The articles in this special section examine the concept of "sensemaking", which refers to how we structure the unknown so as to be able to act in it. In the context of data analysis it involves understanding the data, generating hypotheses, selecting analysis methods, creating novel solutions, and critical thinking and learning wherever needed. Due to its explorative and creative nature, sensemaking is arguably the most challenging part of any data analysis
Provenance and logging for sense making
Sense making is one of the biggest challenges in data analysis faced by both the industry and the research community. It involves understanding the data and uncovering its model, generating a hypothesis, selecting analysis methods, creating novel solutions, designing evaluation, and also critical thinking and learning wherever needed. The research and development for such sense making tasks lags far behind the fast-changing user needs, such as those that emerged recently as the result of so-called “Big Data”. As a result, sense making is often performed manually and the limited human cognition capability becomes the bottleneck of sense making in data analysis and decision making.
One of the recent advances in sense making research is the capture, visualization, and analysis of provenance information. Provenance is the history and context of sense making, including the data/analysis used and the users’ critical thinking process. It has been shown that provenance can effectively support many sense making tasks. For instance, provenance can provide an overview of what has been examined and reveal gaps like unexplored information or solution possibilities.
Besides, provenance can support collaborative sense making and communication by sharing the rich context of the sense making process. Besides data analysis and decision making, provenance has been studied in many other fields, sometimes under different names, for different types of sense making. For example, the Human-Computer Interaction community relies on the analysis of logging to understand user behaviors and intentions; the WWW and database community has been working on data lineage to understand uncertainty and trustworthiness; and finally, reproducible science heavily relies on provenance to improve the reliability and efficiency of scientific research.
This Dagstuhl Seminar brought together researchers from the diverse fields that relate to provenance and sense making to foster cross-community collaboration. Shared challenges were identified and progress has been made towards developing novel solutions
Prediction and diagnosis of Tropical Cyclone formation in an NWP system. Part I
J. Atmos. Sci., 63 3077-3090The article of record as published may be located at http://dx.doi.org/10.1175/JAS3765.
Mitochondrial decay in aging
AbstractSeveral mitochondrial functions decline with age. The contributing factors include, the intrinsic rate of proton leakage across the inner mitochondrial membrane (a correlate of oxidant formation), decreased membrane fluidity, and decreased levels and function of cardiolipin, which supports the function of many of the proteins of the inner mitochondrial membrane. Oxidants generated by mitochondria appear to be the major source of the oxidative lesions that accumulate with age. Evidence supports the suggestion that age-associated accumulation of mitochondrial deficits due to oxidative damage is likely to be a major contributor to cellular, tissue, and organismal aging
The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields
We consider an "elastic" version of the statistical mechanical monomer-dimer
problem on the n-dimensional integer lattice. Our setting includes the
classical "rigid" formulation as a special case and extends it by allowing each
dimer to consist of particles at arbitrarily distant sites of the lattice, with
the energy of interaction between the particles in a dimer depending on their
relative position. We reduce the free energy of the elastic dimer-monomer (EDM)
system per lattice site in the thermodynamic limit to the moment Lyapunov
exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value
and covariance function are the Boltzmann factors associated with the monomer
energy and dimer potential. In particular, the classical monomer-dimer problem
becomes related to the MLE of a moving average GRF. We outline an approach to
recursive computation of the partition function for "Manhattan" EDM systems
where the dimer potential is a weighted l1-distance and the auxiliary GRF is a
Markov random field of Pickard type which behaves in space like autoregressive
processes do in time. For one-dimensional Manhattan EDM systems, we compute the
MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a
compact transfer operator on a Hilbert space which is related to the
annihilation and creation operators of the quantum harmonic oscillator and also
recast it as the eigenvalue problem for a pantograph functional-differential
equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue
of DCDS-
The importance of low-deformation vorticity in tropical cyclone formation
Studies of tropical cyclone (TC) formation from tropical waves have shown that TC formation requires a wave-relative quasi-closed circulation: the "marsupial pouch" concept. This results in a layerwise nearly contained region of atmosphere in which the modification of moisture, temperature and vorticity profiles by convective and boundary layer processes occurs undisturbed. The pouch concept is further developed in this paper. TCs develop near the centre of the pouch where the flow is in near solid body rotation. A reference-frame independent parameter is introduced that effectively measures the level of solid-body rotation in the lower troposphere. The parameter is the product of a normalized Okubo-Weiss parameter and absolute vorticity (OWZ). <br><br> Using 20 yr of ERA-interim reanalysis data and the IBTrACS global TC database, it is shown 95% of TCs including, but not limited to, those forming in tropical waves are associated with enhanced levels of OWZ on both the 850 and 500 hPa pressure levels at the time of TC declaration, while 90% show enhanced OWZ for at least 24 h prior to declaration. This result prompts the question of whether the pouch concept extends beyond wave-type formation to all TC formations world-wide. <br><br> Combining the OWZ with a low vertical shear requirement and lower troposphere relative humidity thresholds, an imminent genesis parameter is defined. The parameter includes only relatively large-scale fluid properties that are resolved by coarse grid model data (>150 km), which means it can be used as a TC detector for climate model applications. It is also useful as a cyclogenesis diagnostic in higher resolution models such as real-time global forecast models
Numerical model for granular compaction under vertical tapping
A simple numerical model is used to simulate the effect of vertical taps on a
packing of monodisperse hard spheres. Our results are in agreement with an
experimantal work done in Chicago and with other previous models, especially
concerning the dynamics of the compaction, the influence of the excitation
strength on the compaction efficiency, and some ageing effects. The principal
asset of the model is that it allows a local analysis of the packings. Vertical
and transverse density profiles are used as well as size and volume
distributions of the pores. An interesting result concerns the appearance of a
vertical gradient in the density profiles during compaction. Furthermore, the
volume distribution of the pores suggests that the smallest pores, ranging in
size between a tetrahedral and an octahedral site, are not strongly affected by
the tapping process, in contrast to the largest pores which are more sensitive
to the compaction of the packing.Comment: 8 pages, 15 figures (eps), to be published in Phys. Rev. E. Some
corrections have been made, especially in paragraph IV
The importance of low-deformation vorticity in tropical cyclone formation
Studies of tropical cyclone (TC) formation from tropical waves have shown that TC formation requires a wave-relative quasi-closed circulation: the "marsupial pouch" concept. This results in a layerwise nearly contained region of atmosphere in which the modification of moisture, temperature and vorticity profiles by convective and boundary layer processes occurs undisturbed. The pouch concept is further developed in this paper. TCs develop near the centre of the pouch where the flow is in near solid body rotation. A reference-frame independent parameter is introduced that effectively measures the level of solid-body rotation in the lower troposphere. The parameter is the product of a normalized Okubo-Weiss parameter and absolute vorticity (OWZ). <br><br> Using 20 yr of ERA-interim reanalysis data and the IBTrACS global TC database, it is shown 95% of TCs including, but not limited to, those forming in tropical waves are associated with enhanced levels of OWZ on both the 850 and 500 hPa pressure levels at the time of TC declaration, while 90% show enhanced OWZ for at least 24 h prior to declaration. This result prompts the question of whether the pouch concept extends beyond wave-type formation to all TC formations world-wide. <br><br> Combining the OWZ with a low vertical shear requirement and lower troposphere relative humidity thresholds, an imminent genesis parameter is defined. The parameter includes only relatively large-scale fluid properties that are resolved by coarse grid model data (>150 km), which means it can be used as a TC detector for climate model applications. It is also useful as a cyclogenesis diagnostic in higher resolution models such as real-time global forecast models
Development and formative evaluation of a family-centred adolescent HIV prevention programme in South Africa
Preventing HIV among young people is critical to achieving and sustaining global epidemic control. Evidence from Western settings suggests that family-centred prevention interventions may be associated with greater reductions in risk behaviour than standard adolescent-only models. Despite this, family-centred models for adolescent HIV prevention are nearly non-existent in South Africa − home to more people living with HIV than any other country. This paper describes the development and formative evaluation of one such intervention: an evidence-informed, locally relevant, adolescent prevention intervention engaging caregivers as co-participants. The programme, originally consisting of 19 sessions for caregivers and 14 for adolescents, was piloted with 12 groups of caregiver-adolescent dyads by community-based organizations (CBOs) in KwaZulu-Natal and Gauteng provinces. Literature and expert reviews were employed in the development process, and evaluation methods included analysis of attendance records, session-level fidelity checklists and facilitator feedback forms collected during the programme pilot. Facilitator focus group discussions and an implementer programme workshop were also held. Results highlighted the need to enhance training content related to cognitive behavioural theory and group management techniques, as well as increase the cultural relevance of activities in the curriculum. Participant attendance challenges were also identified, leading to a shortened and simplified session set. Findings overall were used to finalize materials and guidance for a revised 14-week group programme consisting of individual and joint sessions for adolescents and their caregivers, which may be implemented by community-based facilitators in other settings.The United States Agency for International Development (USAID) Southern Africa under the President’s Emergency Plan for AIDS Relief (PEPFAR) through Cooperative Agreement No. AID-674-A-12-00002 awarded to Tulane University.https://www.elsevier.com/locate/evalprogplan2019-06-01hj2018Educational PsychologyPsycholog
- …