3,180 research outputs found

    Scalar Nonets in Pole-Dominated QCD Sum Rules

    Full text link
    The light scalar nonets are studied using the QCD sum rules for the tetraquark operators. The operator product expansion for the correlators is calculated up to dimension 12 and this enables us to perform analyses retaining sufficient pole-dominance. To classify the light scalar nonets, we investigate the dependence on current quark mass and flavor dynamics. Especially, to examine the latter, we study separately SU(3) singlet and octet states, and show that the number of annihilation diagrams is largely responsible for their differences, which is also the case even after the inclusion of the finite quark mass. Our results support the tetraquark picture for isosinglets, while that for octets is not conclusive yet.Comment: 4 pages, 3 figure, Talk given at Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), November 13-16, 2007, Osaka Univ., Japa

    Orbital Optimization in the Active Space Decomposition Model

    Full text link
    We report the derivation and implementation of orbital optimization algorithms for the active space decomposition (ASD) model, which are extensions of complete active space self-consistent field (CASSCF) and its occupation-restricted variants in the conventional multiconfiguration electronic-structure theory. Orbital rotations between active subspaces are included in the optimization, which allows us to unambiguously partition the active space into subspaces, enabling application of ASD to electron and exciton dynamics in covalently linked chromophores. One- and two-particle reduced density matrices, which are required for evaluation of orbital gradient and approximate Hessian elements, are computed from the intermediate tensors in the ASD energy evaluation. Numerical results on 4-(2-naphthylmethyl)-benzaldehyde and [36_6]cyclophane and model Hamiltonian analyses of triplet energy transfer processes in the Closs systems are presented. Furthermore model Hamiltonians for hole and electron transfer processes in anti-[2.2](1,4)pentacenophane are studied using an occupation-restricted variant

    Gap Condition and Self-Dualized N=4{\cal N}=4 Super Yang-Mills Theory for ADE Gauge Group on K3

    Full text link
    We try to determine the partition function of N=4{\cal N}=4 super Yang-Mills theoy for ADE gauge group on K3 by self-dualizing our previous ADE partition function. The resulting partition function satisfies gap condition.Comment: 17 page

    Properties of Scalar-Quark Systems in SU(3)c Lattice QCD

    Full text link
    We perform the first study for the bound states of colored scalar particles ϕ\phi ("scalar quarks") in terms of mass generation with quenched SU(3)c_c lattice QCD. We investigate the bound states of ϕ\phi, ϕϕ\phi^\dagger\phi and ϕϕϕ\phi\phi\phi ("scalar-quark hadrons"), as well as the bound states of ϕ\phi and quarks ψ\psi, i.e., ϕψ\phi^\dagger\psi, ψψϕ\psi\psi\phi and ϕϕψ\phi\phi\psi ("chimera hadrons"). All these new-type hadrons including ϕ\phi have a large mass of several GeV due to large quantum corrections by gluons, even for zero bare scalar-quark mass mϕ=0m_\phi=0 at a11GeVa^{-1}\sim 1{\rm GeV}. We find a similar mψm_\psi-dependence between ϕψ\phi^\dagger\psi and ϕϕψ\phi\phi\psi, which indicates their similar structure due to the large mass of ϕ\phi. From this study, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluons

    Accurate retrieval of structural information from laser-induced photoelectron and high-harmonic spectra by few-cycle laser pulses

    Get PDF
    By analyzing ``exact'' theoretical results from solving the time-dependent Schr\"odinger equation of atoms in few-cycle laser pulses, we established the general conclusion that differential elastic scattering and photo-recombination cross sections of the target ion with {\em free} electrons can be extracted accurately from laser-generated high-energy electron momentum spectra and high-order harmonic spectra, respectively. Since both electron scattering and photoionization (the inverse of photo-recombination) are the conventional means for interrogating the structure of atoms and molecules, this result shows that existing few-cycle infrared lasers can be implemented for ultrafast imaging of transient molecules with temporal resolution of a few femtoseconds.Comment: 4 pages, 4 figure

    Hadron-hadron interaction from SU(2) lattice QCD

    Full text link
    We evaluate interhadron interactions in two-color lattice QCD from Bethe-Salpeter amplitudes on the Euclidean lattice. The simulations are performed in quenched SU(2) QCD with the plaquette gauge action at β=2.45\beta = 2.45 and the Wilson quark action. We concentrate on S-wave scattering states of two scalar diquarks. Evaluating different flavor combinations with various quark masses, we try to find out the ingredients in hadronic interactions. Between two scalar diquarks (uCγ5du C\gamma_5 d, the lightest baryon in SU(2) system), we observe repulsion in short-range region, even though present quark masses are not very light. We define and evaluate the "quark-exchange part" in the interaction, which is induced by adding quark-exchange diagrams, or equivalently, by introducing Pauli blocking among some of quarks. The repulsive force in short-distance region arises only from the "quark-exchange part", and disappears when quark-exchange diagrams are omitted. We find that the strength of repulsion grows in light quark-mass regime and its quark-mass dependence is similar to or slightly stronger than that of the color-magnetic interaction by one-gluon-exchange (OGE) processes. It is qualitatively consistent with the constituent-quark model picture that a color-magnetic interaction among quarks is the origin of repulsion. We also find a universal long-range attractive force, which enters in any flavor channels of two scalar diquarks and whose interaction range and strength are quark-mass independent. The weak quark-mass dependence of interaction ranges in each component implies that meson-exchange contributions are small and subdominant, and the other contributions, {\it ex.} flavor exchange processes, color-Coulomb or color-magnetic interactions, are considered to be predominant, in the quark-mass range we evaluated.Comment: 14 pages, 20 figure

    Low-lying Dirac eigenmodes and monopoles in 3+1D compact QED

    Full text link
    We study the properties of low-lying Dirac modes in quenched compact QED at β=1.01\beta =1.01, employing 123×Nt12^3\times N_t (Nt=4,6,8,10,12N_t =4,6,8,10,12) lattices and the overlap formalism for the fermion action. We pay attention to the spatial distributions of low-lying Dirac modes below and above the ``phase transition temperature'' TcT_c. Near-zero modes are found to have universal anti-correlations with monopole currents, and are found to lose their temporal structures above TcT_c exhibiting stronger spatial localization properties. We also study the nearest-neighbor level spacing distribution of Dirac eigenvalues and find a Wigner-Poisson transition.Comment: 10 pages, 10 figures, 1 tabl

    Bose-Fermi Pair Correlations in Attractively Interacting Bose-Fermi Atomic Mixtures

    Full text link
    We study static properties of attractively interacting Bose-Fermi mixtures of uniform atomic gases at zero temperature. Using Green's function formalism we calculate boson-fermion scattering amplitude and fermion self-energy in the medium to lowest order of the hole line expansion. We study ground state energy and pressure as functions of the scattering length for a few values of the boson-fermion mass ratio mb/mfm_b/m_f and the number ratio Nb/NfN_b/N_f. We find that the attractive contribution to energy is greatly enhanced for small values of the mass ratio. We study the role of the Bose-Fermi pair correlations in the mixture by calculating the pole of the boson-fermion scattering amplitude in the medium. The pole shows a standard quasiparticle dispersion for a Bose-Fermi pair, for mb/mf1m_b/m_f\geq 1. For small values of the mass ratio, on the other hand, a Bose-Fermi pair with a finite center-of-mass momentum experiences a strong attraction, implying large medium effects. In addition, we also study the fermion dispersion relation. We find two dispersion branches with the possibility of the avoided crossings. This strongly depends on the number rario Nb/NfN_b/N_f.Comment: 14 pages, 27 figure
    corecore