37 research outputs found

    Rapid Simulations of Halo and Subhalo Clustering

    Full text link
    The analysis of cosmological galaxy surveys requires realistic simulations for their interpretation. Forward modelling is a powerful method to simulate galaxy clustering without the need for an underlying complex model. This approach requires fast cosmological simulations with a high resolution and large volume, to resolve small dark matter halos associated to single galaxies. In this work, we present fast halo and subhalo clustering simulations based on the Lagrangian perturbation theory code PINOCCHIO, which generates halos and merger trees. The subhalo progenitors are extracted from the merger history and the survival of subhalos is modelled. We introduce a new fitting function for the subhalo merger time, which includes a redshift dependence of the fitting parameters. The spatial distribution of subhalos within their hosts is modelled using a number density profile. We compare our simulations with the halo finder ROCKSTAR applied to the full N-body code GADGET-2. The subhalo velocity function and the correlation function of halos and subhalos are in good agreement. We investigate the effect of the chosen number density profile on the resulting subhalo clustering. Our simulation is approximate yet realistic and significantly faster compared to a full N-body simulation combined with a halo finder. The fast halo and subhalo clustering simulations offer good prospects for galaxy forward models using subhalo abundance matching.Comment: 28 pages, 10 figures, Accepted for publication in JCA

    Spectro-Imaging Forward Model of Red and Blue Galaxies

    Full text link
    For the next generation of spectroscopic galaxy surveys, it is important to forecast their performances and to accurately interpret their large data sets. For this purpose, it is necessary to consistently simulate different populations of galaxies, in particular Emission Line Galaxies (ELGs), less used in the past for cosmological purposes. In this work, we further the forward modeling approach presented in Fagioli et al. 2018, by extending the spectra simulator Uspec to model galaxies of different kinds with improved parameters from Tortorelli et al. 2020. Furthermore, we improve the modeling of the selection function by using the image simulator Ufig. We apply this to the Sloan Digital Sky Survey (SDSS), and simulate 157,000\sim157,000 multi-band images. We pre-process and analyse them to apply cuts for target selection, and finally simulate SDSS/BOSS DR14 galaxy spectra. We compute photometric, astrometric and spectroscopic properties for red and blue, real and simulated galaxies, finding very good agreement. We compare the statistical properties of the samples by decomposing them with Principal Component Analysis (PCA). We find very good agreement for red galaxies and a good, but less pronounced one, for blue galaxies, as expected given the known difficulty of simulating those. Finally, we derive stellar population properties, mass-to-light ratios, ages and metallicities, for all samples, finding again very good agreement. This shows how this method can be used not only to forecast cosmology surveys, but it is also able to provide insights into studies of galaxy formation and evolution.Comment: 28 pages, 10 figures, accepted for publication in JCA

    Fast Forward Modelling of Galaxy Spatial and Statistical Distributions

    Full text link
    A forward modelling approach provides simple, fast and realistic simulations of galaxy surveys, without a complex underlying model. For this purpose, galaxy clustering needs to be simulated accurately, both for the usage of clustering as its own probe and to control systematics. We present a forward model to simulate galaxy surveys, where we extend the Ultra-Fast Image Generator to include galaxy clustering. We use the distribution functions of the galaxy properties, derived from a forward model adjusted to observations. This population model jointly describes the luminosity functions, sizes, ellipticities, SEDs and apparent magnitudes. To simulate the positions of galaxies, we then use a two-parameter relation between galaxies and halos with Subhalo Abundance Matching (SHAM). We simulate the halos and subhalos using the fast PINOCCHIO code, and a method to extract the surviving subhalos from the merger history. Our simulations contain a red and a blue galaxy population, for which we build a SHAM model based on star formation quenching. For central galaxies, mass quenching is controlled with the parameter Mlimit_{\mathrm{limit}}, with blue galaxies residing in smaller halos. For satellite galaxies, environmental quenching is implemented with the parameter tquench_{\mathrm{quench}}, where blue galaxies occupy only recently merged subhalos. We build and test our model by comparing to imaging data from the Dark Energy Survey Year 1. To ensure completeness in our simulations, we consider the brightest galaxies with i<20i<20. We find statistical agreement between our simulations and the data for two-point correlation functions on medium to large scales. Our model provides constraints on the two SHAM parameters Mlimit_{\mathrm{limit}} and tquench_{\mathrm{quench}} and offers great prospects for the quick generation of galaxy mock catalogues, optimized to agree with observations.Comment: Prepared for submission to JCAP. 28 pages, 15 figure

    Forward Modeling of Spectroscopic Galaxy Surveys: Application to SDSS

    Full text link
    Galaxy spectra are essential to probe the spatial distribution of galaxies in our Universe. To better interpret current and future spectroscopic galaxy redshift surveys, it is important to be able to simulate these data sets. We describe Uspec, a forward modeling tool to generate galaxy spectra taking into account some intrinsic galaxy properties as well as instrumental responses of a given telescope. The model for the intrinsic properties of the galaxy population, i.e., the luminosity functions, and size and spectral coefficients distribu- tions, was developed in an earlier work for broad-band imaging surveys [1], and we now aim to test the model further using spectroscopic data. We apply Uspec to the SDSS/CMASS sample of Luminous Red Galaxies (LRGs). We construct selection cuts that match those used to build this LRG sample, which we then apply to data and simulations in the same way. The resulting real and simulated average spectra show a good statistical agreement overall, with residual differences likely coming from a bluer galaxy population of the simulated sam- ple. We also do not explore the impact of non-solar element ratios in our simulations. For a quantitative comparison, we perform Principal Component Analysis (PCA) of the sets of spectra. By comparing the PCs constructed from simulations and data, we find good agree- ment for all components. The distributions of the eigencoefficients also show an appreciable overlap. We are therefore able to properly simulate the LRG sample taking into account the SDSS/BOSS instrumental responses. The differences between the two samples can be ascribed to the intrinsic properties of the simulated galaxy population, which can be reduced by further improvements of our modelling method in the future. We discuss how these results can be useful for the forward modeling of upcoming large spectroscopic surveys.Comment: 32 pages, 14 figures, accepted by JCA

    Exploring the low-mass regime of galaxy-scale strong lensing: Insights into the mass structure of cluster galaxies

    Full text link
    We aim at a direct measurement of the compactness of three galaxy-scale lenses in massive clusters, testing the accuracy of the scaling laws that describe the members in strong lensing (SL) models of galaxy clusters. We selected the multiply imaged sources MACS J0416.1-2403 ID14 (z=3.221z=3.221), MACS J0416.1-2403 ID16 (z=2.095z=2.095), and MACS J1206.2-0847 ID14 (z=3.753z=3.753). Eight images were observed for the first SL system, and six for the latter two. We focused on the main deflector of each galaxy-scale SL system (identified as members 8971, 8785, and 3910, respectively), and modelled its total mass distribution with a truncated isothermal sphere. We accounted for the lensing effects of the remaining cluster components, and included the uncertainty on the cluster-scale mass distribution through a bootstrapping procedure. We measured a truncation radius value of 6.11.1+2.3kpc6.1^{+2.3}_{-1.1} \, \mathrm{kpc}, 4.00.4+0.6kpc4.0^{+0.6}_{-0.4} \, \mathrm{kpc}, and 5.21.1+1.3kpc5.2^{+1.3}_{-1.1} \, \mathrm{kpc} for members 8971, 8785, and 3910, respectively. Alternative non-truncated models with a higher number of free parameters do not lead to an improved description of the SL system. We measured the stellar-to-total mass fraction within the effective radius ReR_e for the three members, finding 0.51±0.210.51\pm0.21, 1.0±0.41.0\pm0.4, and 0.39±0.160.39\pm0.16, respectively. We find that a parameterisation of the properties of cluster galaxies in SL models based on power-law scaling relations with respect to the total luminosity cannot accurately describe their compactness over their full total mass range. Our results agree with modelling of the cluster members based on the Fundamental Plane relation. Finally, we report good agreement between our values of the stellar-to-total mass fraction within ReR_e and those of early-type galaxies from the SLACS Survey. Our work significantly extends the regime of the current samples of lens galaxies.Comment: Astronomy & Astrophysics, 679, A124 (2023), 15 pages, 12 figures, 8 table

    Galaxies in the central regions of simulated galaxy clusters

    Get PDF
    In this paper, we assess the impact of numerical resolution and of the implementation of energy input from AGN feedback models on the inner structure of cluster sub-haloes in hydrodynamic simulations. We compare several zoom-in re-simulations of a sub-sample of the cluster-sized haloes studied in Meneghetti et al. (2020), obtained by varying mass resolution, softening length and AGN energy feedback scheme. We study the impact of these different setups on the subhalo abundances, their radial distribution, their density and mass profiles and the relation between the maximum circular velocity, which is a proxy for subhalo compactness. Regardless of the adopted numerical resolution and feedback model, subhaloes with masses Msub < 1e11Msun/h, the most relevant mass-range for galaxy-galaxy strong lensing, have maximum circular velocities ~30% smaller than those measured from strong lensing observations of Bergamini et al. (2019). We also find that simulations with less effective AGN energy feedback produce massive subhaloes (Msub> 1e11 Msun/h ) with higher maximum circular velocity and that their Vmax - Msub relation approaches the observed one. However the stellar-mass number count of these objects exceeds the one found in observations and we find that the compactness of these simulated subhaloes is the result of an extremely over-efficient star formation in their cores, also leading to larger-than-observed subhalo stellar mass. We conclude that simulations are unable to simultaneously reproduce the observed stellar masses and compactness (or maximum circular velocities) of cluster galaxies. Thus, the discrepancy between theory and observations that emerged from the analysis of Meneghetti et al. (2020) persists. It remains an open question as to whether such a discrepancy reflects limitations of the current implementation of galaxy formation models or the LCDM paradigm.Comment: 11 pages, 10 figures, abstract is redacted to fit arXiv character count limi

    The probability of galaxy-galaxy strong lensing events in hydrodynamical simulations of galaxy clusters

    Get PDF
    Meneghetti et al. (2020) recently reported an excess of galaxy-galaxy strong lensing (GGSL) in galaxy clusters compared to expectations from the LCDM cosmological model. Theoretical estimates of the GGSL probability are based on the analysis of numerical hydrodynamical simulations in the LCDM cosmology. We quantify the impact of the numerical resolution and AGN feedback scheme adopted in cosmological simulations on the predicted GGSL probability and determine if varying these simulation properties can alleviate the gap with observations. We repeat the analysis of Meneghetti et al. (2020) on cluster-size halos simulated with different mass and force resolutions and implementing several independent AGN feedback schemes. We find that improving the mass resolution by a factor of ten and twenty-five, while using the same galaxy formation model that includes AGN feedback, does not affect the GGSL probability. We find similar results regarding the choice of gravitational softening. On the contrary, adopting an AGN feedback scheme that is less efficient at suppressing gas cooling and star formation leads to an increase in the GGSL probability by a factor between three and six. However, we notice that such simulations form overly massive subhalos whose contribution to the lensing cross-section would be significant while their Einstein radii are too large to be consistent with the observations. The primary contributors to the observed GGSL cross-sections are subhalos with smaller masses, that are compact enough to become critical for lensing. The population with these required characteristics appears to be absent in simulations.Comment: 13 pages, 11 figures. Submitted for publication on Astronomy and Astrophysic

    The PAU Survey: A Forward Modeling Approach for Narrow-band Imaging

    Full text link
    Weak gravitational lensing is a powerful probe of the dark sector, once measurement systematic errors can be controlled. In Refregier & Amara (2014), a calibration method based on forward modeling, called MCCL, was proposed. This relies on fast image simulations (e.g., UFig; Berge et al. 2013) that capture the key features of galaxy populations and measurement effects. The MCCL approach has been used in Herbel et al. (2017) to determine the redshift distribution of cosmological galaxy samples and, in the process, the authors derived a model for the galaxy population mainly based on broad-band photometry. Here, we test this model by forward modeling the 40 narrow-band photometry given by the novel PAU Survey (PAUS). For this purpose, we apply the same forced photometric pipeline on data and simulations using Source Extractor (Bertin & Arnouts 1996). The image simulation scheme performance is assessed at the image and at the catalogues level. We find good agreement for the distribution of pixel values, the magnitudes, in the magnitude-size relation and the interband correlations. A principal component analysis is then performed, in order to derive a global comparison of the narrow-band photometry between the data and the simulations. We use a `mixing' matrix to quantify the agreement between the observed and simulated sets of Principal Components (PCs). We find good agreement, especially for the first three most significant PCs. We also compare the coefficients of the PCs decomposition. While there are slight differences for some coefficients, we find that the distributions are in good agreement. Together, our results show that the galaxy population model derived from broad-band photometry is in good overall agreement with the PAUS data. This offers good prospect for incorporating spectral information to the galaxy model by adjusting it to the PAUS narrow-band data using forward modeling.Comment: Submitted to JCAP, 28 pages, 15 figures, 3 appendice
    corecore