57 research outputs found

    Behavior adaptation for mobile robots via semantic map compositions of constraint-based controllers

    Get PDF
    Specifying and solving Constraint-based Optimization Problems (COP) has become a mainstream technology for advanced motion control of mobile robots. COP programming still requires expert knowledge to transform specific application context into the right configuration of the COP parameters (i.e., objective functions and constraints). The research contribution of this paper is a methodology to couple the context knowledge of application developers to the robot knowledge of control engineers, which, to our knowledge, has not yet been carried out. The former is offered a selected set of symbolic descriptions of the robots’ capabilities (its so-called “behavior semantics”) that are translated in control actions via “templates” in a “semantic map”; the latter contains the parameters that cover contextual dependencies in an application and robot vendor-independent way. The translation from semantics to control templates takes place in an “interaction layer” that contains 1) generic knowledge about robot motion capabilities (e.g., depending on the kinematic type of the robots), 2) spatial queries to extract relevant COP parameters from a semantic map (e.g., what is the impact of entering different types of “collision areas”), and 3) generic application knowledge (e.g., how the robots’ behavior is impacted by priorities, emergency, safety, and prudence). This particular design of, and interplay between, the application, interaction, and control layers provides a structured, conceptually simple approach to advance the complexity of mobile robot applications. Eventually, industry-wide cooperation between representatives of the application and control communities should result in an interaction layer with different standardized versions of semantic complexity.</p

    Generation of skill-specific maps from graph world models for robotic systems

    Full text link
    With the increase in the availability of Building Information Models (BIM) and (semi-) automatic tools to generate BIM from point clouds, we propose a world model architecture and algorithms to allow the use of the semantic and geometric knowledge encoded within these models to generate maps for robot localization and navigation. When heterogeneous robots are deployed within an environment, maps obtained from classical SLAM approaches might not be shared between all agents within a team of robots, e.g. due to a mismatch in sensor type, or a difference in physical robot dimensions. Our approach extracts the 3D geometry and semantic description of building elements (e.g. material, element type, color) from BIM, and represents this knowledge in a graph. Based on queries on the graph and knowledge of the skills of the robot, we can generate skill-specific maps that can be used during the execution of localization or navigation tasks. The approach is validated with data from complex build environments and integrated into existing navigation frameworks.Comment: 8 page

    Predicting Lipid-Rich Plaque Progression in Coronary Arteries Using Multimodal Imaging and Wall Shear Stress Signatures

    Get PDF
    BACKGROUND:Plaque composition and wall shear stress (WSS) magnitude act as well-established players in coronary plaque progression. However, WSS magnitude per se does not completely capture the mechanical stimulus to which the endothelium is subjected, since endothelial cells experience changes in the WSS spatiotemporal configuration on the luminal surface. This study explores WSS profile and lipid content signatures of plaque progression to identify novel biomarkers of coronary atherosclerosis. METHODS: Thirty-seven patients with acute coronary syndrome underwent coronary computed tomography angiography, near-infrared spectroscopy intravascular ultrasound, and optical coherence tomography of at least 1 nonculprit vessel at baseline and 1-year follow-up. Baseline coronary artery geometries were reconstructed from intravascular ultrasound and coronary computed tomography angiography and combined with flow information to perform computational fluid dynamics simulations to assess the time-averaged WSS magnitude (TAWSS) and the variability in the contraction/expansion action exerted by WSS on the endothelium, quantifiable in terms of topological shear variation index (TSVI). Plaque progression was measured as intravascular ultrasound-derived percentage plaque atheroma volume change at 1-year follow-up. Plaque composition information was extracted from near-infrared spectroscopy and optical coherence tomography.RESULTS:Exposure to high TSVI and low TAWSS was associated with higher plaque progression (4.00±0.69% and 3.60±0.62%, respectively). Plaque composition acted synergistically with TSVI or TAWSS, resulting in the highest plaque progression (≥5.90%) at locations where lipid-rich plaque is exposed to high TSVI or low TAWSS. CONCLUSIONS: Luminal exposure to high TSVI, solely or combined with a lipid-rich plaque phenotype, is associated with enhanced plaque progression at 1-year follow-up. Where plaque progression occurred, low TAWSS was also observed. These findings suggest TSVI, in addition to low TAWSS, as a potential biomechanical predictor for plaque progression, showing promise for clinical translation to improve patient prognosis.</p

    A Bayesian optimization framework for the automatic tuning of MPC-based shared controllers

    Full text link
    This paper presents a Bayesian optimization framework for the automatic tuning of shared controllers which are defined as a Model Predictive Control (MPC) problem. The proposed framework includes the design of performance metrics as well as the representation of user inputs for simulation-based optimization. The framework is applied to the optimization of a shared controller for an Image Guided Therapy robot. VR-based user experiments confirm the increase in performance of the automatically tuned MPC shared controller with respect to a hand-tuned baseline version as well as its generalization ability

    A Bayesian optimization framework for the automatic tuning of MPC-based shared controllers

    Get PDF
    This paper presents a Bayesian optimization framework for the automatic tuning of shared controllers which are defined as a Model Predictive Control (MPC) problem. The proposed framework includes the design of performance metrics as well as the representation of user inputs for simulation-based optimization. The framework is applied to the optimization of a shared controller for an Image Guided Therapy robot. VR-based user experiments confirm the increase in performance of the automatically tuned MPC shared controller with respect to a hand-tuned baseline version as well as its generalization ability

    A compact in vitro test bench for cardiovascular flow analysis

    Get PDF
    A low-cost particle image velocimetry set-up that allows to investigate the fluid dynamics inside realistic coronary artery phantoms has been implemented. The proposed smart test bench for experimental characterization of arterial hemodynamics also in the presence of implanted devices represents a low-cost equipment that can be easily implemented in non-expert laboratories for research as well as educational applications

    Wall shear stress topological skeleton analysis in cardiovascular flows: Methods and applications

    Get PDF
    A marked interest has recently emerged regarding the analysis of the wall shear stress (WSS) vector field topological skeleton in cardiovascular flows. Based on dynamical system theory, the WSS topological skeleton is composed of fixed points, i.e., focal points where WSS locally vanishes, and unstable/stable manifolds, consisting of contraction/expansion regions linking fixed points. Such an interest arises from its ability to reflect the presence of near-wall hemodynamic features associated with the onset and progression of vascular diseases. Over the years, Lagrangian-based and Eulerianbased post-processing techniques have been proposed aiming at identifying the topological skeleton features of the WSS. Here, the theoretical and methodological bases supporting the Lagrangian- and Eulerian-based methods currently used in the literature are reported and discussed, highlighting their application to cardiovascular flows. The final aim is to promote the use of WSS topological skeleton analysis in hemodynamic applications and to encourage its application in future mechanobiology studies in order to increase the chance of elucidating the mechanistic links between blood flow disturbances, vascular disease, and clinical observations
    • …
    corecore