15 research outputs found

    Simulation of rail roughness growth on small radius curves using a non-Hertzian and non-steady wheel–rail contact model

    Get PDF
    A time-domain model for the prediction of long-term growth of rail roughness (corrugation) on small radius curves is presented. Both low-frequency vehicle dynamics due to curving and high-frequency vehicle–track dynamics excited by short-wavelength rail irregularities are accounted for. The influence of non-Hertzian and non-steady effects in the wheel–rail contact model on rail wear is studied. The model features a contact detection method that accounts for wheelset yaw angle as well as surface irregularities and structural flexibilities of wheelset and rail. The development of corrugation on a small radius curve is found to be highly influenced by the wheel–rail friction coefficient. For vehicle speed 25 km/h and friction coefficient 0.3, predictions of long-term roughness growth on the low rail show decreasing magnitudes in the entire studied wavelength interval. For friction coefficient 0.6, roughness growth is found at several wavelengths. The corresponding calculation for the high rail contact of the trailing wheelset indicates no roughness growth independent of friction coefficient. The importance of accounting for the phase between the calculated wear and the present rail irregularity is demonstrated

    Prevalence of BRCA1 and BRCA2 pathogenic variants in a large, unselected breast cancer cohort.

    Get PDF
    Breast cancer patients with BRCA1/2-driven tumors may benefit from targeted therapy. It is not clear whether current BRCA screening guidelines are effective at identifying these patients. The purpose of our study was to evaluate the prevalence of inherited BRCA1/2 pathogenic variants in a large, clinically representative breast cancer cohort and to estimate the proportion of BRCA1/2 carriers not detected by selectively screening individuals with the highest probability of being carriers according to current clinical guidelines. The study included 5,122 unselected Swedish breast cancer patients diagnosed from 2001 to 2008. Target sequence enrichment (48.48 Fluidigm Access Arrays) and sequencing were performed (Illumina Hi-Seq 2,500 instrument, v4 chemistry). Differences in patient and tumor characteristics of BRCA1/2 carriers who were already identified as part of clinical BRCA1/2 testing routines and additional BRCA1/2 carriers found by sequencing the entire study population were compared using logistic regression models. Ninety-two of 5,099 patients with valid variant calls were identified as BRCA1/2 carriers by screening all study participants (1.8%). Only 416 study participants (8.2%) were screened as part of clinical practice, but this identified 35 out of 92 carriers (38.0%). Clinically identified carriers were younger, less likely postmenopausal and more likely to be associated with familiar ovarian cancer compared to the additional carriers identified by screening all patients. More BRCA2 (34/42, 81.0%) than BRCA1 carriers (23/50, 46%) were missed by clinical screening. In conclusion, BRCA1/2 mutation prevalence in unselected breast cancer patients was 1.8%. Six in ten BRCA carriers were not detected by selective clinical screening of individuals

    Towards a model for prediction of railway tread brake noise

    No full text
    A model for complex linear stability analysis of railway tread brakes has been developed. It accounts for inertial effects due to wheel rotation as well as damping provided by tangential wheel–rail contact forces. Kinematic constraint equations are used to model the normal brake–wheel contact. For a brake–wheel friction coefficient higher than 0.2, unstable vibrations develop for several system eigenmodes in the frequency range above 6 kHz. The required level of brake–wheel friction at onset of instability is influenced by the wheel profile and the tangential wheel–rail contact damping. The present work constitutes the first step in the development of a prediction model for railway tread brake noise

    Curve squeal of rail vehicles: Linear stability analysis and non-linear time-domain simulation

    No full text
    Railway curve squeal arises from self-excited vibrations during curving. In this paper, a combination of a frequency-and a time-domain approach for curve squeal is applied in order to compare and evaluate the two different approaches. In the frequency-domain, linear stability is investigated through complex eigenvalue analysis. The time-domain model is based on a Green\u27s functions approach and uses a convolution procedure to obtain the system response. To ensure comparability, the same submodels are implemented in both squeal models. The wheel model includes a single flexible wheel and accounts for inertia effects due to rotation adopting Eulerian coordinates. The track is modelled using the moving element method technique corresponding to a finite element mesh that travels with the vehicle speed. Coulomb\u27s law with a constant friction coefficient is applied to model the local friction characteristics in the contact zone. The frictional instability arises due to geometrical coupling. The rolling contact model applied is Kalker\u27s variational method in the time domain and a linearized version of this method in the frequency domain. Conditions similar to those of a curve on the Stockholm metro exposed to severe curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient and the direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. The results of both models show similar tendencies, but differ in the predicted squeal frequencies

    Curve squeal of rail vehicles: Linear stability analysis and non-linear time-domain simulation

    No full text
    Railway curve squeal arises from self-excited vibrations during curving. In this paper, a combination of a frequency-and a time-domain approach for curve squeal is applied in order to compare and evaluate the two different approaches. In the frequency-domain, linear stability is investigated through complex eigenvalue analysis. The time-domain model is based on a Green\u27s functions approach and uses a convolution procedure to obtain the system response. To ensure comparability, the same submodels are implemented in both squeal models. The wheel model includes a single flexible wheel and accounts for inertia effects due to rotation adopting Eulerian coordinates. The track is modelled using the moving element method technique corresponding to a finite element mesh that travels with the vehicle speed. Coulomb\u27s law with a constant friction coefficient is applied to model the local friction characteristics in the contact zone. The frictional instability arises due to geometrical coupling. The rolling contact model applied is Kalker\u27s variational method in the time domain and a linearized version of this method in the frequency domain. Conditions similar to those of a curve on the Stockholm metro exposed to severe curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient and the direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. The results of both models show similar tendencies, but differ in the predicted squeal frequencies

    Simulation of rail roughness growth on small radius curves using a non-Hertzian and non-steady wheel-rail contact model

    No full text
    A time-domain model for the prediction of long-term rail roughness growth on small radius curves is presented. Both lowfrequency vehicle dynamics due to curving and high-frequency vehicle-track dynamics excited by short-wavelength rail irregularities are accounted for. The influence of non-Hertzian and non-steady effects in the wheel-rail contact model on rail wear is studied. The model features a refined contact detection algorithm that accounts for wheelset yaw angle as well as surface irregularities and structural flexibilities of wheelset and rail. The development of corrugation on a small radius curve is found to be highly influenced by the wheel-rail friction coefficient. For vehicle speed 25 km/h and friction coefficient 0.3, predictions of long-term roughness growth on the low rail generated by the leading wheelset show decreasing magnitudes in the entire studied wavelength interval. For friction coefficient 0.6, roughness growth is found at several wavelengths. The corresponding calculation for the high rail contact indicates no roughness growth generated by the trailing wheelset independent of friction coefficient. The importance of accounting for the phase between the calculated wear and the present rail irregularity is demonstrated

    Investigation of railway curve squeal using a combination of frequency- and time-domain models

    No full text
    Railway curve squeal arises from self-excited vibrations during curving. In this paper, a frequency- and a timedomainapproach for curve squeal are compared. In particular, the capability of the frequency-domain model topredict the onset of squeal and the squeal frequencies is studied. In the frequency-domain model, linear stabilityis investigated through complex eigenvalue analysis. The time-domain model is based on a Green\u27s functionsapproach and uses a convolution procedure to obtain the system response. To ensure comparability, the samesubmodels are implemented in both squeal models. The structural flexibility of a rotating wheel is modelled byadopting Eulerian coordinates. To account for the moving wheel‒rail contact load, the so-called moving elementmethod is used to model the track. The local friction characteristics in the contact zone is modelled inaccordance with Coulomb\u27s law with a constant friction coefficient. The frictional instability arises due togeometrical coupling. In the time-domain model, Kalker\u27s non-linear, non-steady state rolling contact modelincluding the algorithms NORM and TANG for normal and tangential contact, respectively, is solved in eachtime step. In the frequency-domain model, the normal wheel/rail contact is modelled by a linearization of theforce-displacement relation obtained with NORM around the quasi-static state and full-slip conditions areconsidered in tangential direction. Conditions similar to those of a curve on the Stockholm metro exposed tosevere curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient andthe direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. Results from both models are similar in terms of the instability range in the parameter space and the predictedsqueal frequencies

    Investigation of railway curve squeal using a combination of frequency- and time-domain models

    No full text
    Railway curve squeal arises from self-excited vibrations during curving. In this paper, a frequency- and a timedomainapproach for curve squeal are compared. In particular, the capability of the frequency-domain model topredict the onset of squeal and the squeal frequencies is studied. In the frequency-domain model, linear stabilityis investigated through complex eigenvalue analysis. The time-domain model is based on a Green\u27s functionsapproach and uses a convolution procedure to obtain the system response. To ensure comparability, the samesubmodels are implemented in both squeal models. The structural flexibility of a rotating wheel is modelled byadopting Eulerian coordinates. To account for the moving wheel‒rail contact load, the so-called moving elementmethod is used to model the track. The local friction characteristics in the contact zone is modelled inaccordance with Coulomb\u27s law with a constant friction coefficient. The frictional instability arises due togeometrical coupling. In the time-domain model, Kalker\u27s non-linear, non-steady state rolling contact modelincluding the algorithms NORM and TANG for normal and tangential contact, respectively, is solved in eachtime step. In the frequency-domain model, the normal wheel/rail contact is modelled by a linearization of theforce-displacement relation obtained with NORM around the quasi-static state and full-slip conditions areconsidered in tangential direction. Conditions similar to those of a curve on the Stockholm metro exposed tosevere curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient andthe direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. Results from both models are similar in terms of the instability range in the parameter space and the predictedsqueal frequencies

    Wheel–Rail Impact Loads, Noise and Vibration: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures

    No full text
    Railway noise and ground-borne vibration induced by wheel–rail impact loads are generated by discrete wheel/rail surface irregularities or local deviations in the nominal wheel–rail contact geometry. On the running surface of a rail, a discrete irregularity can be inherent to the railway design, for example at crossings or insulated joints. On the wheel or rail, the irregularity could also be the result of surface damage due to rolling contact fatigue cracking or a consequence of wheel sliding without rolling. This review describes the mechanisms of wheel–rail impact generated by wheel flats, rail joints and crossings. These can be a source of locally increased noise and vibration levels and increased annoyance, as well as of damage to vehicle and track components. The wheel–rail excitation at such irregularities, as indicated by the vertical wheel centre trajectory, leads to an abrupt change of momentum, potentially causing a momentary loss of wheel–rail contact followed by an impact on the rail. The resulting loading is a transient and often periodically repeated event exciting vibration in a wide frequency range with most of the energy concentrated below about 1\ua0kHz. For the numerical prediction of high-magnitude transient loading and situations potentially leading to loss of contact, a non-linear wheel–rail contact model is required, implying that the simulation of contact force is carried out in the time domain. To avoid the need for large, computationally expensive models, a hybrid approach has been developed in which the time history of the contact force is transformed into an equivalent roughness spectrum; this is used as input to frequency-domain models for the prediction of noise and vibration. Since the excitation mechanism is similar to that for rolling noise, the same types of measures to mitigate wheel and track vibration can be applied. However, the main priority should be to control the irregularity by design and regular maintenance
    corecore