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ABSTRACT

A time-domain model for the prediction of long-term growth of rail roughness (corrugation) on small radius curves is 

presented. Both low-frequency vehicle dynamics due to curving and high-frequency vehicle–track dynamics excited by 

short-wavelength  rail  irregularities  are  accounted  for.  The influence of non-Hertzian and non-steady effects  in  the 

wheel–rail  contact model on rail  wear  is studied.  The model features a contact  detection method that accounts for 

wheelset yaw angle as well as surface irregularities and structural flexibilities of wheelset and rail. The development of 

corrugation on a small radius curve is found to be highly influenced by the wheel–rail friction coefficient. For vehicle 

speed 25 km/h and friction coefficient 0.3, predictions of long-term roughness growth on the low rail show decreasing 

magnitudes in the entire studied wavelength interval. For friction coefficient 0.6, roughness growth is found at several 

wavelengths.  The corresponding calculation for the high rail contact of the trailing wheelset indicates no roughness 

growth independent of friction coefficient. The importance of accounting for the phase between the calculated wear and 

the present rail irregularity is demonstrated. 

 1 INTRODUCTION

Rail corrugation (periodic surface irregularities at distinct wavelengths) is  a problem experienced by many railway 

networks worldwide. According to the classification suggested in [1], short-pitch corrugation developing on the low rail 

on curves is referred to as “rutting”. The large magnitude creep forces and relative sliding between the wheel and rail 

make curves particularly inclined to develop rail corrugation. Because of the high representation of small radius curves, 

metro  systems are particularly affected.  Corrugation causes a  pronounced dynamic  loading that  leads to  increased 

generation of noise and in severe cases even damage to track and vehicle components. To manage the problem with rail 

corrugation, railway networks worldwide are forced to run regular and expensive grinding procedures. For example, in 

2008, the cost for rail grinding of the track network (including grinding for other purposes than corrugation removal) on 

the Stockholm metro was 1.2 million USD [2]. This emphasises the need for an accurate simulation model that can be 

applied to understand and possibly mitigate the problem. 

To study corrugation growth, a combination of models for short-term dynamic vehicle–track interaction and long-term 

damage is required. To achieve the high-frequency dynamic excitation, either an initial roughness is modelled on the 

wheel and rail surfaces  [3–8] or the vehicle–track system develops a self-excited oscillation, e.g. a friction induced 

oscillation [9-10]. In early investigations by Hempelmann et al. [3-4], a linear model was applied to study the initiation 

of corrugation growth on tangent track. The pinned-pinned mode, where the rail is vibrating with a wavelength equal to 

the double sleeper spacing, was found to be the major cause. Also, the importance of the interaction between two 

adjacent wheelsets mounted in a bogie was discussed. More recent work has concluded that the rail coupling between 

adjacent wheelsets is constituting an important wavelength-fixing mechanism to rail corrugation [5-6]. Few studies in 

the literature consider the numerical prediction of long-term growth of rutting corrugation [9-10]. Problems of rutting 

corrugation appearing in curves with radius below 200 m on the Stuttgart tram network in Germany were investigated 

in  [10]. By applying a model developed in the commercial software SIMPACK, the corrugation was explained by a 

friction induced vibration involving the first bending mode of the leading wheelset and the P2 resonance (the vertical 

system resonance where vehicle unsprung mass, rails and sleepers vibrate in phase on the stiffness of the ballast) of the 

vehicle–track system.    

Modelling the wheel‒rail normal contact problem according to Hertzian theory and the tangential contact problem by an 

approximate  model,  such  as  Kalker's  simplified  steady-state  theory  realised  through  FASTSIM,  implies  several 

simplifying assumptions. For example, asymmetrical normal contact stress distributions and non-elliptical shapes of the 

contact area as caused by non-constant curvatures of the contacting bodies are not considered. Additionally, the time-
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variant  creepages and contact  geometries  lead to  a non-steady contact  problem. In numerical  studies of  long-term 

corrugation growth,  approximate contact  models are  often applied both for the computationally cumbersome time-

integration of the dynamic vehicle‒track interaction and for the calculation of wear. In recent years, several researchers 

have presented models that instead use non-Hertzian and non-steady contact models for the wear calculation [11–15]. It 

has been shown that, both for single wavelength and broadband rail roughness excitation, these models do not predict 

corrugation growth.  The  model  presented  in  [15] allows for  simulation of  the  longitudinal  vibration of  a  flexible 

wheelset  applying  a  non-Hertzian  and  non-steady contact  model  in  the  time-integration.  Corrugation  growth  was 

predicted in a wavelength interval between 3 cm and 10 cm. However, it was not possible to relate the peaks in the 

developed rail  roughness to any previously known wavelength-fixing mechanism, such as for  example the pinned-

pinned mode of the track. This highlights the importance of using an accurate contact model in wear calculations and 

confirms what was stated by Grassie in  [16], “the question as to whether corrugation occurs as a result of dynamic 

behaviour in the contact area itself must remain open” .

In  the  current  work,  the  time-domain  model  for  simulation  of  general  three-dimensional  dynamic  vehicle–track 

interaction on a small radius railway curve presented in [17] is further developed to account for non-Hertzian and non-

steady contact and wear. The simulation model is able to simultaneously capture the low-frequency vehicle dynamics 

due to curving and the high-frequency (up to at least 200 Hz) vehicle–track dynamics excited by surface irregularities 

on wheels and rails. By modelling the full vehicle, the local bending modes of the rail appearing due to the constraints 

imposed by adjacent wheelsets are considered. The structural flexibility of wheelsets and the track is accounted for by 

using the finite element method. In the wear calculations, three-dimensional non-Hertzian and non-steady wheel–rail 

contact is modelled based on an implementation of Kalker's variational method  [18]. To calculate wear, the Archard 

model is applied [19]. Similar conditions of the vehicle–track system as described in [2], with corrugation developing 

on the low rail of a 120 m radius curve are considered. The influence of non-Hertzian and non-steady contact on rail 

wear is investigated. The functionality of the model is demonstrated in several numerical examples including excitation 

by a single wavelength irregularity and by broadband roughness.  

 2 RAIL WEAR PREDICTION MODEL

The methodology for simulation of long-term rail roughness growth is illustrated in the flow chart of  Figure 1. The 

influence of the carbody on the bogie curving behaviour is accounted for by performing a pre-processing step where the 

Figure 1. Illustration of the iteration scheme for simulation of long-term rail roughness growth
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dynamic  interaction of  a  full  three-unit  C20  trainset  and  a  curved  track is  simulated  in  the  commercial  program 

GENSYS  [20]. Forces  and  moments  in  the  secondary  suspension  are  saved  in  look-up  tables  that  are  used  for 

interpolation in the subsequent analysis. In Section 3 the in-house Matlab code DIFF3D [17] applied to simulate the 

high-frequency dynamic vehicle–track interaction is described. The high-frequency dynamic excitation is achieved by 

introducing an irregularity on the running surface of the rails, see Section 3.3. In DIFF3D, the flexible vehicle and track 

models interact through the wheel–rail contacts. For an input holding the positions and creepages of the contacting 

wheel and rail surfaces, the output from the contact model are the normal and tangential contact forces. During time-

integration in DIFF3D, the states, i.e. the displacements and velocities of the vehicle and track models, are stored in 

each time-step.  These are used in a post-processing step to calculate  rail  wear  for  the predicted vehicle  and track 

motion, see Section 4. In the post-process calculation of wear, the simulation model features the choice of using either 

Hertzian  and  steady-state  (Hertz/FASTSIM)  or  non-Hertzian  and  non-steady-state  (Kalker's  exact  theory)  contact 

models. The calculated wear depth is low-pass filtered with a cut-off frequency of approximately 300 Hz. To simulate a 

large number of train passages, the wear depth is extrapolated before the surface geometry is updated and used as input 

in  the next  simulation of  high-frequency dynamic  vehicle–track interaction.  The  irregularity on the rail  surface  is 

updated according to the mapping method described in Section 4.2. The procedure continues until a predefined number 

of train passages has been reached. 

 3 VEHICLE–TRACK INTERACTION MODEL

In the following, the model for high-frequency dynamic vehicle–track interaction DIFF3D is presented, see Figure 1. A 

more detailed description is given in [17].

 3.1 Track model

The dynamic behaviour of a finite length section of the discretely supported track is accounted for by a model based on 

the finite element method. The model includes two rails, rail pads, sleepers and ballast, see Figure 2(a). The track gauge 

is 1435 mm with a gauge widening of 9 mm applied in the curve. A track length of 70 sleeper bays is considered. This 

ensures negligible influence of the clamped boundary conditions at the rail ends on the dynamic track response at the 

mid-section of the model. The rails are modelled using Euler-Bernoulli-Saint-Venant beam elements positioned at the 

centre-of-gravity axis of the rails. In this context, these elements are valid for frequencies below 500 Hz and 200 Hz in 

the vertical and lateral directions, respectively [21-22]. In order for the element passing frequency (due to the wheels 

passing over the elements at a given speed) to be outside of the frequency range of interest, 20 beam elements are used 

in each sleeper bay. The rail pads and ballast are modelled by linear springs and viscous dampers coupled in parallel. 

The coupling between the high and low rails through the sleepers is not modelled and the sleepers have only degrees-of-

freedom  in  vertical  and  lateral  translations.  Moreover,  the  longitudinal  displacements  of  the  rail  elements  are 

constrained to  zero.  The  track is  taken  as  symmetric  with  respect  to  the  track centre  line,  and  repetitive  support 

properties along the rails are assumed. 

The equations of motion for the track model are written as

M t ¨̈̈̈utCt ˙̇̇̇utK t ut=Qt (1)

where Mt, Ct, and Kt are the symmetric mass, damping and stiffness matrices of the track, Qt is the external load vector 

and  ut is  the  corresponding  track  displacement  vector.  Due  to  the  distribution  of  damping,  the  Nt second-order 

differential equations in Equation (1) are transformed into 2Nt first-order equations as

˙̇̇̇z t=A t z tB t Qt (2a)

z t=[ u

˙̇̇̇ut
] ,     A t=− [ 0 − I

Mt

− 1
K t M t

− 1
Ct
] ,     B t=[ 0

Mt

− 1] (2b,c,d)

Through a modal expansion, using a truncated set of complex-conjugated mode pairs included in the matrix  Λt, the 

coupled equations of motion in Equation (2) can be fully decoupled. This means, Equation (2) can be put in diagonal 

form suitable for time-stepping ordinary differential equation solvers as

˙̇̇̇qt=diag a qt t

T
Bt Qt

(3)

where q t and ˙̇̇̇qt are the complex-valued modal coordinates and velocities, respectively, and diag(a) holds the complex-

valued modal stiffness. In the current study, eigenmodes corresponding to eigenfrequencies up to 300 Hz were included 

in the modal expansion.

The track model has been calibrated against rail  receptances measured on the small radius curve on the Stockholm 

metro described in [2]. At the test site, the track consists of continuously welded BV50 rails (50 kg/m and steel grade 
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R350HT) with rail inclination 1:40 on ballast subgrade. The rails are mounted, via resilient rail  pads, to monobloc 

concrete sleepers separated by a distance of about 60 cm. The rail receptances were measured using sledgehammer 

excitation, vertically on the top of the rail and laterally on the side of the rail head. Input data for the track model based  

on the calibration is found in the Appendix. 

 3.2 Vehicle model

The  traffic  on  the  curve  described  in  [2] is  exclusively  composed  of  C20  trains  manufactured  by  Bombardier 

Transportation. Axle load approximately 12.5 tonnes, axle distance 2.3 m and wheel radius 0.39 m. A model consisting 

of two flexible wheelsets and a rigid bogie frame has been developed to represent this vehicle, see  Figure 2(b). The 

primary suspension is modelled by parallel non-linear springs and viscous dampers in three directions. The car body 

influences the curving position of the bogie by forces and moments transmitted through the secondary suspension. In 

[2], the excitation frequency due to the rail corrugation was found to be between 70 Hz and 200 Hz. In this frequency 

range it is sufficient to model the carbody as a prescribed load [23]. Rigid body simulations using a full C20 train model 

are performed in a pre-processing step using the commercial program GENSYS [20]. The resulting time-variant forces 

Fss and  moments  Mss in  the  secondary  suspension  are  saved  in  look-up  tables  and  used  for  interpolation  in  the 

subsequent analysis in DIFF3D. In the frequency range below 200 Hz, structural deformation of the C20 wheelset is 

mainly limited to the wheel axle [17]. Therefore the wheelset model comprises a flexible wheel axle, rigid wheels and a 

rigid driving disc. Euler-Bernoulli-Saint-Venant beam elements are used to model the wheel axle.

The adopted multibody dynamics formulation allows for bodies that are exposed to small elastic deformations but large 

three-dimensional  translations  and  rotations  [24]. Each  body in  the  multibody system is  assigned  with  a  floating 

coordinate system (xv

i
yv

i
z v

i
) that translates and rotates with the body. The configuration of each body is defined by its 

reference and elastic coordinates. The reference coordinates hold the global position  R v

i
 and the angular rotation   v

i
 

(Euler angles are used in the current study) of the floating coordinate system, while the elastic coordinates qv

i
 (modal 

coordinates) define the elastic deformation with respect to this coordinate system. 

The nonlinear equations of motion for vehicle body i can be written as

M v

i
¨̈̈̈uv

i
Cv

i
˙̇̇̇uv

i
Kv

i
uv

i
=Qv

i
eQv

i
v ,    uv

i =[R v
i v

i q v
i ]

T

(4a,b)

where  M v

i
,  Cv

i
,  K v

i
 are the mass,  damping and stiffness matrices of vehicle body  i,  uv

i
 is the vector of independent 

degrees-of-freedom of the system, and Qv

i
e is the vector of externally applied loads such as the forces in the wheel‒rail 

contacts. The quadratic velocity vector  Qv

i
v holds the gyroscopic and Coriolis effects. The second-order differential 

equations  of  Equation  (4a)  are  transformed  into  first-order  form  following  a  similar  procedure  as  outlined  by 

Equation (2). 

 3.3 Irregular surfaces of wheel and rail

The simulation procedure allows for general three-dimensional motion of the vehicle on the track. The locations of 

contact on the wheel and rail are determined by the curving conditions (e.g. vehicle speed and track geometry) and can 

(a) (b)

Figure 2. (a) Illustration of track model. Sleepers are modelled as rigid masses (ms). Two layers of springs and dampers, (kp, cp) and 

(kb, cb), represent the properties of rail pads and ballast, respectively. (b) Vehicle model including a rigid bogie frame and two flexible 

wheelsets (the driving disc is outlined only on one wheelset). Forces and moments acting in the secondary suspension are accounted 

for by the application of FSS and MSS
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not be presumed to occur for a restricted range of positions on the wheel and rail profiles. To model the geometry of the 

rail surface, eight-noded quadratic two-dimensional elements are used [25]. This allows for a model of general surface 

irregularities  with  an  accuracy  governed  by  the  selected  element  size.  In  the  current  study,  the  element  size  is 

approximately 1.0 mm and 1.5 mm in the longitudinal and lateral directions, respectively. The modelling of the running 

surfaces of wheels and rails is illustrated in Figure 3. Since wheel out-of roundness is not considered here, the surface of 

the  wheel  in  the  circumferential  direction  can  be  described  analytically.  The  Swedish  BV50  rail  profile  with  an 

inclination of 1:40 and a S1002 wheel profile are used.  

In [2], the development of roughness within a grinding interval of one year was investigated by repetitively performing 

measurements of rail roughness. The measured data is used to calculate a roughness level spectrum as

Lr=10 log r
2

r ref
2      (5)

where Lr is defined in dB relative to the reference value rref = 1 μm and r is the root mean square value of the roughness, 

r(x),  evaluated  in  1/3  octave  bands.  In  the  current  study,  rail  roughness  in  the  approximate  wavelength  interval 

3 cm - 65 cm is considered. This ensures a broadband roughness excitation that comprises the range of wavelengths 

where corrugation was found in [2]. To transform the measured roughness level spectrum into an irregularity modelled 

on the rail, the procedure presented in [26] is followed. The initial rail roughness profile is calculated as

r x=∑
i=1

M

a i{∑j=1

N

sin2 


ij

x ij}     (6)

where  the  total  number  of 1/3  octave bands and  the number  of sines  used  in  each band are  given by  M and  N, 

respectively, and  ij are the mutually independent phase angles uniformly distributed between 0 and 2π. In the current 

work N = 100, and  ij are determined by a uniform random distribution. The N wavelengths λij  are determined using a 

constant wavenumber increment Δκi calculated as

  i=
2
N  1

 i

min
−

1

i

max      (7)

where   i

min
 and  i

max
 are the minimum and maximum wavelength in band i, respectively. The amplitude of the N sines in 

each band is obtained as

ai= 2

N
10

Lr i/20
    (8)

where the amplitudes are given in μm. 

 3.4 Non-Hertzian and non-steady wheel–rail contact model

The vehicle and track subsystems are coupled through the wheel–rail contacts. In the multi-body simulation framework, 

this interaction is accounted for by using force elements that respond with forces and moments (normal and tangential 

contact forces and spin moment) when subjected to deformation (normal deformation and creepages).  In the time-

integration of the vehicle–track system, the contact is modelled by a non-linear Hertzian spring  [27] in the normal 

direction  and  an implementation of  Kalker's  simplified  theory of  rolling  contact  FASTSIM  [28] in  the  tangential 

direction. The non-Hertzian and non-steady-state contact problem is considered in the post-processing step through an 

implementation of Kalker's variational method [18]. 

The contact variables are described with reference to the coordinate system (x c yc zc) of the contact which is located at 

the centre-of-gravity of the rail and is moving in the rolling direction at vehicle speed v, see Figure 3. It is a right-hand 

coordinate system with the x c- and zc-axes pointing in the longitudinal and upwards directions, respectively. As outlined 

in  Figure 3,  a  potential  contact  area comprising of  Nc elements with  side lengths   x and   y in the  xc-  and  yc-

directions, respectively, is introduced. In the current study, quadratic elements with side lengths 1.0 mm are used. The 

centre node is  rigidly attached to the origin of the contact  coordinate  system. The geometry of the wheel and rail 

surfaces  are  modelled by four-noded linear two-dimensional  elements  [25]. In each time-step in  the simulation of 

dynamic vehicle–track interaction, the surface geometry of the wheel and rail is described with respect to the potential 

contact area by linear interpolation.

According to Hertz/FASTSIM, contact stresses as well as the location and orientation of the contact area are determined 

by  the  kinematics  and  the  curvatures  of  the  contacts  on  the  wheel  and  rail  surfaces.  In  order  to  enhance  the 

computational efficiency, it  is  customary to treat the contact detection problem separately from the solution of the 

contact stresses. In the proposed model, two different contact detection algorithms can be applied. An approximate and 
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computationally efficient solution is achieved through the use of so-called contact point functions (KPF) pre-calculated 

in the commercial  simulation software GENSYS.  In the KPF,  the  location and orientation of the contact  area are 

assumed to be dependent only on the relative lateral displacement, Δy, between wheel and rail [20]. These calculations 

do not consider irregularities of wheel and rail surfaces and wheelset yaw angle. In order to obtain a more accurate 

location  of  the  contact,  the  true  three-dimensional  wheel  and  rail  contact  surfaces  are  considered  online  in  the 

simulation of dynamic vehicle‒track interaction. The contact point is assumed to be located at the centre-of-gravity of 

the rigid penetration, h, of wheel and rail, see Figure 3. This allows for a solution of the contact detection problem that 

accounts for the influence of structural deformation of wheelset and rail, wheelset yaw angle and the geometrical shift 

of the contact area with respect to the centre of the wheel rotation axis due to wheel and rail surface irregularities. The 

procedure is restricted to cases of one-point contact. However, since it is here applied only for contacts on the rail crown 

(low rail contact for leading wheelset and high rail contact for trailing wheelset), this restriction does not have any 

important implications in the current work. In Figure 3, results calculated in the post-processing step with the non-

Hertzian and non-steady contact model  for a wheel  with radius 0.39 m rolling over a  corrugated rail  surface with 

wavelength 40 mm are presented. The geometrical shift for the case of contact at the transition between a trough and a 

peak of the corrugation is observed. The non-elliptical and non-Hertzian distribution of normal contact stress is also 

evident. In the following, the non-Hertzian and non-steady contact model is described. For a more detailed description, 

see [18].

 3.4.1 Normal contact

The normal contact problem is solved to determine the size and shape of the contact area as well as the distribution of 

normal contact pressure,  p I 3, and local normal displacements,  u I 3. The distance,  d I, between the deformed bodies at 

element I of the potential contact area is introduced as

d I=h Iu I 3     (9)

where h I is the rigid penetration, i.e. the distance between the wheel and the rail in their undeformed states, and u I 3 is 

the displacement difference between wheel and rail. The influences of structural flexibility and surface irregularities are 

accounted for by the rigid penetration. The displacement difference u I 3 only accounts for the elastic deformation of the 

surface in the vicinity of the contact area. 
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Figure 3. Illustration of a wheel rolling on a 4 cm single wavelength rail irregularity. The potential contact area and contact coordinate 

system (xc yc zc) moving at constant speed v are outlined. The distribution of normal contact stress at different locations along the 
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The contact conditions are formulated as

d I0

p I 30

d I p I 3=0

    (10)

If contact occurs in a surface element, the distance is zero and the normal contact pressure is positive.  

 3.4.2 Tangential contact

If contact quantities, such as the shape of the contact area or the creepages, change significantly during the passage of a 

particle through the contact area, the contact model needs to account for non-steady effects. For conditions similar to 

those in [2] (corrugation wavelength λ = 5 cm and an approximate length of the semi-axis in the rolling direction of the 

contact area a = 0.5 cm), the λ/a-ratio is equal to 10. According to [29], non-steady analysis is necessary for λ/a-ratios 

below 10 and hence the non-steady effects for the curving conditions in [2] may be significant.

The tangential contact problem is solved to determine the distribution of stick and slip over the contact elements, and to 

calculate the distribution of tangential tractions, p I , and tangential displacement difference, u I . The spin creepage is 

estimated to have a limited influence on the contact problem due to the small contact angle at the current contact 

locations and is not accounted for. The local shift at element  I  of the potential contact area, defined as the relative 

displacement of two opposing particles on wheel and rail during one time step  t= x/v, is calculated as

S I =uI W I 
∗
− u I 

,
,  =1,2 (11)

W I 1

∗

=  x

W I 2

∗

=  x
(12)

where  u I 
,

 is the tangential displacement difference for the previous time step, and   and    are the longitudinal and 

lateral  creepages,  respectively.  According to  the  terminology by Kalker  [28], W I  is  the rigid  shift.  In  this  work, 

contributions from the structural flexibility are included in the evaluation of the longitudinal and lateral creepages and 

hence W I 
∗  also accounts for the structural dynamics. The contact conditions within the contact area are defined as

Stick area: S I =0,  =1,2 ,  pI 1

2  p I 2

2  p I 3  (13)

Slip area:           
p I

 p I 1

2
 pI 2

2

=−

S I 

S I 1

2
S I 2

2


,  =1,2 ,  pI 1
2  p I 2

2 = p I 3  (14)

where μ  is the friction coefficient, which is taken as constant over the contact area. Equations (13) state that the local 

shift vanishes in the stick area. Equation (14) ensures that slip only occurs when the tangential stress is equal to the 

traction bound pI 3  and that traction occurs in the direction opposite to the direction of slip. 

 3.4.3 Constitutive relation

To be able to solve the normal and tangential contacts,  constitutive relations relating the traction,  p I ,  to the local 

displacement differences, u I τ, are needed. Assuming that the wheel and the rail can be locally approximated by elastic 

half-spaces, analytical expressions for the influence functions, A, are found in [28]. The traction is assumed piecewise 

constant for the elements of the potential contact area. The coefficient A I i J j gives the displacement in the i-direction at 

element  I due to a unit traction in the j-direction at element  J. Employing the half-space approach implies important 

assumptions such as an elastic material response, a contact area that is small with respect to the dimensions of the 

contacting bodies and negligible inertial effects. For smooth wheel and rail running surfaces the latter two assumptions 

are approximately met for contact between wheel tread and rail crown, and in the frequency range considered in the 

current study.

The relation between the local displacements and stresses is given by

    
u I =∑



3

∑
J

N c

AI  J  p J  ,  =1,2,3 (15)

The resulting contact forces applied as external forces on the vehicle and track sub-systems are calculated as

    
F =∑

I

Nc

p I x  y ,  =1,2,3 (16)
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To solve the normal and tangential contact problems, the variational method is used in combination with the active set 

algorithm proposed by Kalker [28]. 

Contact stresses calculated using Hertz/FASTSIM, or the non-Hertzian and non-steady contact model are compared in 

Figure 4. Hertzian contact conditions were obtained by modelling cylindrical profiles for both the wheel and rail. To 

create partial slip in the contact area, a driving torque of 500 Nm was applied on the wheelsets. Good agreement is 

observed with regard to size and shape of the contact area. The difference in total contact force is 3 % and 8 % in the 

vertical and longitudinal directions, respectively. This serves as a form of verification of the present implementation of 

the non-Hertzian and non-steady contact model in the frame of DIFF3D. For a validation of the non-Hertzian and non-

steady contact model against Kalker's own implementation see [18].

 4 CALCULATION OF RAIL WEAR

Based on experimental work, Archard and Hirst were able to identify two different wear regimes in terms of wear rate 

and type of wear debris: mild and severe wear [30]. Different parts of the rail profile may be subjected to different wear 

regimes. The wear rate at the gauge corner may be up to ten times higher than that of the rail crown [31]. In the current 

study,  the commonly applied  Archard's  law for  sliding  wear  [30] is  implemented  in  the  post-processing  step,  see 

Figure 1. Time-histories of vehicle and track states saved from the simulation in DIFF3D are used for interpolation with 

a fixed time-step Δt = Δx/v, where v is the longitudinal velocity of the contact area and Δx is the length of one contact 

element in the longitudinal direction. The distributions of sliding distance and normal contact pressure in the contact are 

either computed using Hertz/FASTSIM or the non-Hertzian and non-steady contact model described in Section 3.4.

 4.1 Wear model

According to the Archard wear model, the volume of worn material is calculated as

V wear=k w

Nd

H
    (17)

where kw is the non-dimensional wear coefficient, N is the normal contact force, d is the sliding distance and H is the 

hardness of the softer material in contact. The parameter kw is dependent on several factors, such as the normal contact 

pressure  and  the  sliding  velocity.  For  wheel  and  rail  steels,  it  varies  in  the  range  1 ∙ 10-4 – 400 ∙ 10-4 [32]. The 

distributions of sliding distance and normal contact pressure in the contact are either computer using Hertz/FASTSIM or 

the  non-Hertzian  and  non-steady  contact  model.  For  both  contact  models,  wear  is  calculated  for  a  contact  area 

discretised into Nc quadratic elements with side length Δx = 1.0 mm. Results calculated with FASTSIM using a denser 

grid of elements (40 elements in both x- and y-directions) are transformed to the coarser mesh of the non-steady contact 

model by linear interpolation. 
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Figure 4. Comparisons of (a) normal and (b) longitudinal contact stresses calculated for the low rail contact of the leading wheelset 

using Hertz/FASTSIM, and the non-Hertzian and non-steady contact model. Rigid vehicle model (one bogie) travelling at 25 km/h on 

a rigid tangent track. Cylindrical profiles of wheels and rails (Hertzian contact conditions). A driving torque of 500 Nm (traction 

coefficient approximately 0.01) is applied on the wheelsets. The results calculated with FASTSIM were transformed to the same 

mesh as used for the non-Hertzian and non-steady contact model.  Non-Hertzian and non-steady model,  Hertz/FASTSIM
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Based on Equation (17), the wear depth Δz of one sliding element I of the contact area may be calculated as

 z I=kw

p I 3  d

H
    (18)

where the sliding distance Δd is the distance a particle on the rail slides during its passage through grid element I

 d =∣s∣ t     (19)

Here s is the sliding velocity. For the non-Hertzian and non-steady contact model, the sliding distance Δd corresponds to 

the Euclidean norm of the local shift ∣S I∣ .

 4.2 Updating of the rail surface irregularity

The contact area moves along the rail at speed approximately equal to the vehicle speed. During each time increment Δt 

in the post-calculation of wear, material particles on the rail surface pass through one element of the contact mesh. 

However,  each rail  particle  located along the travelling path of the contact  area will  pass  through several  contact 

elements during passage of a wheel. Hence, the accumulated wear during the passage of a wheel needs to be determined 

in order to calculate the change in rail  surface shape. Previous work reported in the literature do this  by different 

approaches. In  [8], stationary contact conditions were assumed during the passage of material particles through the 

contact area. The accumulated wear was calculated as the sum of wear along each longitudinal strip of the discretised 

contact area (FASTSIM was used in this study) and assigned to the location of maximum wear. A similar procedure was 

used in [5]. In the current work, the calculated wear in the contact area is mapped onto the rail surface elements in each 

time step Δt. Figure 5 illustrates the procedure used for the calculation of the accumulated wear. The calculated wear 

depth  ΔzI for contact  element  I  (outlined in grey colour) is distributed over four elements of the rail  surface mesh 

according to the respective area fractions. The wear depth mapped from element I to rail element  ri+1, j+1 (hatched area) 

is calculated as

 z I

i1, j1
= I

i1, j1 z I     (20)

where  I

i1, j1
 is a number between 0 – 1 depending on the area fraction of element I  that is overlaying rail element 

ri+1, j+1.   

 5 NUMERICAL EXAMPLES

The functionality of the proposed model for simulation of long-term rail roughness development will be demonstrated 

in several numerical examples. Conditions similar to those described in  [2] with a Bombardier C20 train travelling 

through  a  curve  of  radius  120 m are  considered.  For  these  conditions,  the  largest  magnitudes  of  the  normal  and 

tangential contact forces occur for the first bogie of the second car in the C20 train-set (bogie 21) [17]. In the following, 

results are shown only for this bogie. 

The non-dimensional wear coefficient  kw and the hardness of the rail  material  H are taken as 1 ∙ 10-4 and 3.2 GPa, 
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Figure 5. Illustration of procedure used for mapping of wear from the contact mesh to the rail mesh. The calculated wear depth ΔzI for 

element I of the contact mesh (coloured in grey) is distributed on several elements of the rail mesh according to area fractions. The 

hatched area shows the wear depth associated with rail element ri+1, j+1 
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respectively. However, the values of these parameters are here of limited importance since the purpose of this section is 

to demonstrate the features of the proposed model rather than to present results that quantitatively agree with field 

observations. The focus of the present investigation is the distribution of wear in the rolling direction. The phase shift 

between the calculated wear and the present rail irregularity is of major importance since it determines the potential 

growth of corrugation. In the following, the sum of the accumulated wear in the lateral direction is presented. This 

enables the phase relation between the calculated wear and the rail irregularity to be observed in two-dimensional form. 

Moreover, the rail irregularity is modelled with a constant magnitude in the lateral direction of the rail. 

 5.1  Single wavelength initial rail irregularity

A single wavelength irregularity with amplitude corresponding to the limit in roughness level according to ISO3095 

[33] is introduced on the low rail of the curve. Results are shown for the low rail contact of the leading wheelset. The 

vehicle speed is 25 km/h.  The calculated contact  forces and wear  show small amplitude oscillations at frequencies 

significantly exceeding the frequency range of interest in the current study (< 200 Hz). Therefore for practical reasons 

the  results  shown  in  this  section  were  low-pass  filtered  with  a  cut-off  frequency  of  350 Hz  (corresponding  to  a 

wavelength of 2 cm at vehicle speed 25 km/h). Considering the potential growth of roughness, only the dynamic part of 

the wear depth is of interest. Therefore, the steady-state wear is subtracted from the calculated wear depth. Moreover, 

the wear is normalised with respect to the maximum wear depth. In Figure 6, the normalised dynamic part of the wear 

depth for friction coefficients 0.3 and 0.6 is shown as a function of the non-dimensional longitudinal coordinate  x/λ  

(0 ≤ x ≤λ). Results calculated in the post-processing step for Hertz/FASTSIM and the non-Hertzian and non-steady 

contact models are compared. To reduce simulation time, Hertz/FASTSIM were used to model the contact until the 

vehicle had reached the centre part of the flexible track model. Thereafter the non-Hertzian and non-steady contact 

model was switched on for a distance of approximately 3.5 m. To exclude the transient effects caused by the change of 

contact models, the results in Figure 6 are taken for a wavelength in the middle of this section. 
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(a)

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/λ

 N
o

rm
al

is
ed

 ∆
z

(b)

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/λ

 N
o

rm
al

is
ed

 ∆
z

μ = 0.6

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/λ

 N
o

rm
al

is
ed

 ∆
z

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/λ

 N
o

rm
al

is
ed

 ∆
z

Figure 6. Normalised accumulated wear depth after one wheel passage calculated with (a) the non-Hertzian and non-steady contact 

model and (b) Hertz/FASTSIM using the updated location of contact. Results are shown for a vehicle travelling at 25 km/h in a 

circular curve of radius 120 m. The low rail contact of the leading wheelset and friction coefficients μ = 0.3 and μ = 0.6 are 

considered. An initial sinusoidal irregularity of different wavelengths (dashed line) and with wavelength-dependent amplitude 

corresponding to the limit according to ISO3095 [33] is modelled on the low rail. Results calculated with Hertz/FASTSIM using a 

pre-calculated location of contact are presented for friction coefficient 0.3 and wavelengths 5 cm and 9 cm (dashed lines with 
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For  both  friction  coefficients,  the  results  calculated  using  Hertz/FASTSIM  (without  pre-calculating  contact  point 

functions (KPF) for µ  = 0.3) or the non-Hertzian and non-steady contact model are similar, see Figure 6. For friction 

coefficient 0.3 and for all wavelengths, the maximum wear depth occurs close to the peak of the initial irregularity 

(phase shift is close to zero) indicating no roughness growth. Increasing the friction coefficient to 0.6 is seen to cause a 

significant increase in phase between the wear and the initial rail irregularity at wavelengths 5 cm, 9 cm and 10 cm. The 

phase shift between the calculated wear and the initial rail irregularity will lead to a translation of the rail irregularity 

with an increasing number of wheel passages, see Section 5.3. 

The irregularity on the rail introduces a geometrical shift of the wheel–rail contact. This means that the location of 

contact is displaced from the position straight below the centre of the wheel axle. For the case of a single wavelength 

rail irregularity, the contact location is shifted towards the closest peak. As a consequence, a particle on the rail surface 

stays within the contact area the longest on the peaks of the rail irregularity. In particular for cases of full-slip, this leads 

to a contribution to the accumulated wear calculated at these positions  [11]. The geometrical shift adds an additional 

non-linearity to  the contact  modelling,  and it  has been concluded to significantly influence the phase between the 

calculated wear and the present rail irregularity  [5]. If the location of contact is determined based on pre-calculated 

contact point functions (KPF), the calculation using Hertz/FASTSIM overestimates the phase between the calculated 

wear and the rail irregularity. This is illustrated for two different wavelengths and friction coefficient 0.3 in Figure 6(b). 

As described in  Section 3.4, the proposed model enables the  location of contact to be updated “online” in the time-

integration of the vehicle–track interaction. This procedure does not  only account  for  the  longitudinal  shift  of the 

contact  point  due to  the rail  irregularity,  but  also  for  the influence  of for  example the structural  flexibility of  the 

wheelset and rail. Hence, the increased phase shift observed in Figure 6 is not only attributed to the geometrical shift. 

In  Figure  7,  the  phase  relations  between  the  contact  forces  and  the  initial  rail  irregularity  are  shown for  friction 

coefficient 0.3 and an irregularity wavelength of 6 cm. Similar results were obtained using Hertz/FASTSIM or the non-

Hertzian and non-steady contact model (only results for the non-Hertzian and non-s

teady contact model are shown here). Full slip was observed in the wheel–rail contact. The normal contact force, FN, 

and lateral contact force, Fη, lead the initial rail irregularity. The low magnitude of the longitudinal contact force,  Fξ, 

developed for the low rail contact of the leading wheelset is noted. No simple relationship between the phase of the 

contact forces and the wear depth with respect to the initial rail irregularity is observed.

 5.2 Broadband initial rail irregularity

To obtain more realistic wheel–rail contact conditions, a broadband roughness with magnitudes corresponding to the 

limit according to ISO3095 is modelled on the low rail. The initial rail irregularity includes wavelength components in 

the approximate interval 3 cm – 63 cm and is generated using the procedure in Section 3.3. 

In order to determine the influence of the vehicle–track system on rail  wear,  the non-dimensional transfer function 

between the calculated wear depth and the rail irregularity is used

H 1 /=
 Z 1 / 
R1 /

    (21)

where ∆Z and R are the complex-valued discrete Fourier transforms of the calculated wear depth and the present rail 

Figure 7. Time histories of dynamic wheel–rail contact forces calculated for the low rail contact of the leading wheelset during the 

passage of a wheel on a sinusoidal rail irregularity of 6 cm wavelength (outlined for reference). Amplitude of the irregularity 

according to ISO3095 (2.4 μm) [33]. Vehicle speed 25 km/h, curve radius 120 m and friction coefficient μ = 0.3. Results were 

calculated using the non-Hertzian and non-steady contact model
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irregularity, respectively. In the following, the transfer function it is applied for conditions (e.g. vehicle speed, friction, 

rail roughness, etc.) similar to the curve of Stockholm public transport described in [2]. 

For  friction  coefficient  0.3  and  vehicle  speed  25 km/h,  the  influence  of  non-Hertzian  and  non-steady  effects  are 

investigated for the low rail contact of the leading wheelset. The results in Figure 8 are based on a distance of 14 m on 

the mid section of the flexible track model. Results calculated for Hertz/FASTSIM, with or without an updated location 

of contact,  and the non-Hertzian and non-steady contact model  are compared with regard to the magnitude of the 

transfer function H evaluated in 1/24 octave bands. For longer wavelengths, similar magnitudes of the transfer function 

are calculated with all contact models, see Figure 8(a). For shorter wavelengths, the wear depth magnitudes calculated 

for the non-Hertzian and non-steady contact model exceed those obtained using Hertz/FASTSIM. The associated phase 

of the transfer function is shown in Figure 8(b). In the studied wavelength interval, the phase calculated with the non-

Hertzian and non-steady contact  model,  and Hertz/FASTSIM with an updated location of contact,  are similar.  The 

observation from Figure 6(b) regarding the increase in phase for Hertz/FASTSIM when the location of contact is not 

updated is confirmed for broadband excitation, see Figure 8(b). Especially at wavelengths below approximately 3.8 cm, 

the phase calculated using Hertz/FASTSIM without updating the location of contact is significantly overestimated. The 

wavelength 3.8 cm corresponds to about three times the longitudinal length of the contact area. Updating the location of 

contact is observed to influence the phase between the wear depth and the rail irregularity also at wavelengths that are 

long in relation to the length of the contact area, see the dip at about wavelength 110 mm in Figure 8(b).    

One important characteristic of rutting corrugation is that it only develops on the low rail in curves. When a C20 vehicle  
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rail irregularity after one wheel passage of the leading wheelset on the low rail. Rail roughness modelled on the low rail with 

magnitude according to the limit in ISO3095 [33]. Curve radius 120 m, vehicle speed 25 km/h and friction coefficient 0.3. 
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: High rail contact of the trailing wheelset, μ = 0.6
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is negotiating a 120 m radius curve, large relative lateral wheel–rail displacements are developed at the leading wheelset 

of each bogie causing the high rail contact to be located towards the gauge corner and gauge face of the rail. For the 

curve studied in [2], the wear generated by this contact is reduced by the application of lubrication on the high rail. In 

the simulations, this is considered by modelling a friction coefficient of 0.1 on the gauge face of the high rail. The 

trailing wheelset of the bogie maintains a close to radial position but is displaced laterally towards the low rail. This 

means the high rail contact is located on the rail crown. The transfer function H calculated for the high rail contact of 

the trailing wheelset and the low rail contact of the leading wheelset for different friction coefficients are compared in 

Figure 9. Only results for the non-Hertzian and non-steady contact model are shown. A change in friction coefficient is 

observed to largely influence both the magnitude and phase of the transfer function. For friction coefficient 0.6, a peak 

appears at a wavelength of about 5.2 cm (corresponding to excitation frequency 126 Hz at vehicle speed 25 km/h), see 

Figure  9(a).  This  peak  is  not  observed  for  friction  coefficient  0.3.  The  increase  in  friction  coefficient  creates  a 

significant increase in phase at and around the approximate wavelengths 5.2 cm and 11 cm (indicating a possibility for 

roughness growth). This confirms the observations made for the single wavelength irregularities in Section 5.1. Small 

phase magnitudes are calculated for the high rail contact in the entire investigated wavelength interval, see Figure 9(b). 

This indicates that corrugation will not grow on the high rail.        

 5.3 Simulation of long-term rail roughness growth

In the previous section, phase shifts between the calculated wear depth and the initial rail irregularity in the order of π/2 

were found. To conclude if this implies roughness growth, the rail surface needs to be updated in order to predict the 

long-term change in rail roughness. When the vehicle negotiates the small radius curve, large magnitudes of steady-state 

lateral  and  longitudinal  creepages  and  wear  are  developed  at  the  contacts  of  the  leading  and  trailing  wheelsets, 

respectively. Since this leads to a uniform wear that does not influence the potential growth of roughness, only the 
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Figure 10. Magnitude spectrum of the quotient between the predicted and initial rail irregularities after 400 wheel passages 

(corresponding to four simulations of dynamic vehicle–track interaction). The high rail contact of the trailing wheelset is considered 

using the non-Hertzian and non-steady contact model. Initial rail roughness with magnitude according to the limit in ISO3095 [33]. 
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Figure 11. Magnitude spectrum of the quotient between the predicted and initial rail irregularities after 400 wheel passages 

(corresponding to four simulations of dynamic vehicle–track interaction). Roughness growth is indicated by bright areas. The low rail 

contact of the leading wheelset is considered using the non-Hertzian and non-steady contact model. Initial rail roughness with 

magnitude according to with the limit in ISO3095 [33]. Curve radius 120 m and vehicle speed 25 km/h. (a)  μ = 0.3, (b)  μ = 0.6
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dynamic part  of the wear  is  considered in the following.  Further,  since the calculations of  dynamic vehicle‒track 

interaction are time consuming, the wear depth caused by one wheel passage is multiplied with the magnification factor 

100. The total wear depth for one wheel passage is in the order of 1 μm at friction coefficient 0.3. In the field, variations 

in for example friction conditions, vehicle speed and wheel profile wear will lead to a distribution of wheel‒rail contact 

positions over  the rail  head.  To account  for  this,  a  smoothing procedure is  used where  the magnified wear  depth 

calculated for one wheel passage is uniformly distributed in the lateral direction of the rail head. 

The influence of friction coefficient on the development of rail roughness on the low rail of a 120 m radius curve is 

investigated. Vehicle speed 25 km/h and 400 wheel passages (corresponding to four simulations of dynamic vehicle‒

track interaction) are considered. The quotient between the worn and initial rail irregularity is presented in Figure 11. 

The same initial irregularity was modelled on the low rail for both friction coefficients. In order to investigate the 

distribution  of  rail  wear  in  the  travelling  direction  of  the  vehicle,  the  rail  irregularity  spectrum was  evaluated  in 

longitudinal steps of 0.1 m. Each spectrum was calculated from 8192 samples corresponding to a 2.3 m section of rail. 

A Hanning window was applied to reduce spectral leakage. The proposed simulation model is valid in the frequency 

range below 200 Hz and therefore the calculated wear depth was low-pass filtered eliminating wavelengths shorter than 

3 cm. For friction coefficient 0.3, the increasing number of wheel passages leads to a reduction in roughness magnitudes 

in all  of the studied wavelength interval,  see Figure 11(a).  However for friction coefficient  0.6,  it  is  observed that 

corrugation growth is predicted at several wavelengths in scattered positions along the rail. The roughness magnitudes 

after 400 wheel passages (vehicle speed 25 km/h and friction coefficient 0.6) on the high rail contact of the trailing 

wheelset  are  shown in Figure 10.  Decreasing roughness magnitudes are  observed in  the entire  studied wavelength 

interval.  

In Figure 11(b), the wear calculated for friction coefficient 0.6 and vehicle speed 25 km/h shows roughness growth at 

wavelength 5.2 cm at scattered locations along the simulated rail section (see for example at longitudinal coordinate 

7 m). The potential for roughness development at this wavelength is further investigated by introducing a sinusoidal 

irregularity of the corresponding wavelength and of constant  amplitude in the lateral direction of the low rail.  The 

results  for  friction coefficient  0.3  and  300 wheel  passages,  presented  in  Figure 12(a),  show that  the  peaks  of  the 

irregularity are gradually worn down with an increasing number of wheel passages. This is due to the small phase 

between the calculated wear depth and the present rail irregularity as discussed earlier, see Section 5.1. It was observed 

in Figure 9(b) that a change in friction coefficient from 0.3 to 0.6 resulted in an average phase of magnitude slightly 

below π/2 at wavelength 5.2 cm. This leads to a translation of the rail irregularity along the rail, see Figure 12(b). Due 

to the phase delay between the calculated wear and the initial rail irregularity, the translation direction is opposite to the 

travelling direction of the vehicle. 

For an initial single wavelength rail irregularity that was predicted to gradually wear off, the numerical study by Jin et 

al. [13] showed a simultaneous translation of the corrugation profile. Predictions of long-term roughness development 

for an initial  single  wavelength rail  irregularity have also  been presented by Matsumoto et  al.  [9].  The increasing 

corrugation magnitudes were found to involve a longitudinal translation of the corrugation profile. The translation of 

corrugation peaks demonstrated in the present paper is a similar effect as found in references [9,13]. However, to the 

authors' knowledge, this is an effect that has not yet been verified by field measurements.   

In a previous measurement campaign, the roughness level on the low rail of a 120 m radius metro curve was observed 
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Figure 12. Development of rail roughness after 300 wheel passages (corresponding to three simulations of dynamic vehicle–track 

interaction). Initial rail irregularity (thick dashed curve), final rail irregularity (thick red solid curve). The low rail contact of the 

leading wheelset is considered. All results were calculated using the non-Hertzian and non-steady contact model. Initial sinusoidal 

irregularity of wavelength 5 cm and with amplitude according to the limit in ISO3095 [33]. Curve radius 120 m and vehicle speed 

25 km/h. (a)  μ = 0.3, (b)  μ = 0.6
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to increase until approximately 300 days after grinding [2]. Thereafter, additional growth of roughness was moderate. 

The question of what determines the limit in amplitude of corrugation growth is of fundamental importance. For friction 

coefficient  0.6,  Figure  11(b)  shows  substantial  roughness  growth  at  wavelength  3.8 cm  corresponding  to  the 

approximate frequency 183 Hz (f = v/λ). This is caused by a coupled vehicle–track vibration primarily determined by 

the  first  anti-symmetric  eigenmode  of  the  wheelset.  An  investigation  of  the  development  of  rail  roughness  for 

1200 wheel passages on an initial sinusoidal rail irregularity of this wavelength is shown in  Figure 13. To clarify the 

presentation, Figure 13(a) shows the result for a length of rail corresponding to one selected wavelength of the initial 

rail irregularity. The substantial growth of roughness observed initially is seen to gradually slow down. As shown in 

Figure 13(b), this is caused by a decreasing phase between the calculated wear depth and the present rail irregularity. 

After 1200 wheel passages the trough of the rail  irregularity is seen to primarily move backwards with a constant 

amplitude. 

 6 CONCLUDING REMARKS

A time-domain model for the prediction of long-term rail roughness growth on small radius curves has been presented. 

The present model captures the dynamic vehicle–track interaction in a broad frequency range (up to at least 200 Hz). 

Both low-frequency dynamics of the full vehicle due to curving and high-frequency vehicle–track vibration due to 

short-wavelength rail roughness excitation are accounted for. The structural flexibility of the rails and wheelset axles are 

included by application of the finite  element method.  The influence of non-Hertzian and non-steady effects  in the 

wheel–rail contact model on rail wear is considered by employing the variational method by Kalker implemented in a 

post-processing step. To calculate an accurate location of the contact, the three-dimensional irregular surfaces of the 

wheel and rail are considered in each time-step in the simulation of dynamic vehicle–track interaction. This allows for 

the contact detection problem, used in combination with Hertz/FASTSIM, to account for the wheelset yaw angle as well 

as for the surface irregularities and structural flexibilities of wheelset and rail.   

The implementation of the non-Hertzian and non-steady contact model has been verified versus Hertz/FASTSIM for a 

case of cylindrical wheel and rail profiles and contact conditions involving partial slip. The phase between the wear and 

the present rail irregularity calculated with Hertz/FASTSIM in combination with pre-calculated contact point functions 

(KPF) to solve the contact detection problem was significantly over-estimated compared to that obtained from the non-

Hertzian and non-steady contact model. Although particularly legible at short wavelengths (below approximately three 

times the longitudinal length of the contact area),  significant  differences were observed also at longer wavelengths 

(around 10 cm). When the contact positions used in conjunction with Hertz/FASTSIM were updated by applying the 

refined contact detection algorithm, the calculated phase was similar to the non-Hertzian and non-steady contact model 

in  the  entire  studied  wavelength  interval.  This  emphasises  the  importance  of  the  contact  detection  problem  in 

calculations of long-term roughness development.   

The development of roughness on the low rail of the 120 m radius curve was found to be influenced by the level of 

friction. For friction coefficient 0.3, the prediction of long-term roughness development showed decreasing magnitudes 

in the entire studied wavelength interval. The corresponding calculation for friction coefficient 0.6 indicated corrugation 
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Figure 13. (a) Development of rail roughness after 1200 wheel passages (corresponding to 12 simulations of dynamic vehicle–track 

interaction) shown for one single wavelength. Initial rail irregularity (thick dashed curve), final rail irregularity (thick red solid 

curve). (b) Phase between the calculated wear depth and the present rail irregularity at each wheel passage. The low rail contact of 

the leading wheelset is considered. All results were calculated using the non-Hertzian and non-steady contact model. Initial 

sinusoidal irregularity of wavelength 3.8 cm with amplitude according to the limit in ISO3095 [33]. Curve radius 120 m, vehicle 

speed 25 km/h and friction coefficient 0.6
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development at several wavelengths. Calculations of long-term roughness development on the high rail contact for the 

trailing wheelset indicated no corrugation growth. This agrees with the observations in [2]. For all cases the gauge face 

of the high rail was modelled with friction coefficient 0.1 (lubrication).   

The question of what determines a limit for the roughness magnitude for fully grown corrugation was investigated for 

an initial sinusoidal irregularity of wavelength 3.8 cm. Due to the gradual decrease in phase between the calculated 

wear depth and the present rail irregularity for an increasing number of wheel passages, the rapid roughness growth 

observed initially is eventually stopped at approximately five times its initial amplitude. At this stage of roughness 

development, the rail irregularity is seen to primarily move backwards with a constant amplitude. This is a non-linear 

effect that cannot be investigated by only assessing the wear depth magnitude. The authors emphasise the verification of 

these results towards field measurements as an important part of future work. 

Recent models accounting for several wavelength-fixing mechanisms and non-Hertzian and non-steady contact models 

for the wheel–rail contact have been unable to predict corrugation growth [11–14]. Apart from indicating the significant 

influence of the contact model, this has created a discussion about still missing components in the model to reach a 

comprehensive explanation of the development of corrugation. With regard to this, the current work underlines the 

importance of the phase between the calculated wear depth and the present rail irregularity. For example at wavelength 

3.8 cm, peaks in the wear depth were found for friction coefficients 0.3 and 0.6 as well as for both the low and high rail  

contacts. However, due to the associated phase between the calculated wear depth and the present rail irregularity, it was 

only for the low rail contact of the leading wheelset and for friction coefficient 0.6 that corrugation was generated. 

Corrugation for the other cases was ruled out.    
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APPENDIX

Rail

The rail parameters in  Table 1 are used in the Euler-Bernoulli-Saint-Venant beam theory. The rail inclination is 1:40.

 Table 1: Parameters of the rail model (BV50 profile)

Parameter Value

Bending stiffness about lateral axis EIY [MNm2] 4.32

Bending stiffness about vertical axis EIZ [MNm2] 0.74

Saint-Venant torsional stiffness GKV [MNm2] 0.18

Mass distribution [kg/m] 50

Cross-section area [m2] 6.371 ∙ 10-3

Young's modulus [GN/m2] 210

Poisson's ratio 0.3

Track support

The track support parameters given in   Table 2 were determined by a tuning of the model to obtain good agreement 

between calculated and measured receptances. 

 Table 2: Parameters of the track support model. Each parameter may hold values which correspond to the translational directions x 

(longitudinal), y (lateral) and z (vertical), and three values which correspond to the rotations φi (i = x, y, z). A dash (-) means that the 

corresponding degree-of-freedom is constrained to zero

Parameter x y z φx φy φz

kp [MN/m] - 30 200 300 469 260

kb [MN/m] - 5 30 - - -

cp [kNs/m] - 5 48 100 128 128

cb [kNs/m] - 32 32 - - -

ms [kg] - 125 125 - - -


