1,382 research outputs found
An investigation of eddy-current damping of multi-stage pendulum suspensions for use in interferometric gravitational wave detectors
In this article we discuss theoretical and experimental investigations of the use of eddy-current damping for multi-stage pendulum suspensions such as those intended for use in Advanced LIGO, the proposed upgrade to LIGO (the US laser interferometric gravitational-wave observatory). The design of these suspensions is based on the triple pendulum suspension design developed for GEO 600, the German/UK interferometric gravitational wave detector, currently being commissioned. In that detector all the low frequency resonant modes of the triple pendulums are damped by control systems using collocated sensing and feedback at the highest mass of each pendulum, so that significant attenuation of noise associated with this so-called local control is achieved at the test masses. To achieve the more stringent noise levels planned for Advanced LIGO, the GEO 600 local control design needs some modification. Here we address one particular approach, namely that of using eddy-current damping as a replacement or supplement to active damping for some or all of the modes of the pendulums. We show that eddy-current damping is indeed a practical alternative to the development of very low noise sensors for active damping of triple pendulums, and may also have application to the heavier quadruple pendulums at a reduced level of damping
Multicanonical Hybrid Monte Carlo: Boosting Simulations of Compact QED
We demonstrate that substantial progress can be achieved in the study of the
phase structure of 4-dimensional compact QED by a joint use of hybrid Monte
Carlo and multicanonical algorithms, through an efficient parallel
implementation. This is borne out by the observation of considerable speedup of
tunnelling between the metastable states, close to the phase transition, on the
Wilson line. We estimate that the creation of adequate samples (with order 100
flip-flops) becomes a matter of half a year's runtime at 2 Gflops sustained
performance for lattices of size up to 24^4.Comment: 15 pages, 8 figure
A Method to Study Relaxation of Metastable Phases: Macroscopic Mean-Field Dynamics
We propose two different macroscopic dynamics to describe the decay of
metastable phases in many-particle systems with local interactions. These
dynamics depend on the macroscopic order parameter through the restricted
free energy and are designed to give the correct equilibrium
distribution for . The connection between macroscopic dynamics and the
underlying microscopic dynamic are considered in the context of a projection-
operator formalism. Application to the square-lattice nearest-neighbor Ising
ferromagnet gives good agreement with droplet theory and Monte Carlo
simulations of the underlying microscopic dynamic. This includes quantitative
agreement for the exponential dependence of the lifetime on the inverse of the
applied field , and the observation of distinct field regions in which the
derivative of the lifetime with respect to depends differently on . In
addition, at very low temperatures we observe oscillatory behavior of this
derivative with respect to , due to the discreteness of the lattice and in
agreement with rigorous results. Similarities and differences between this work
and earlier works on finite Ising models in the fixed-magnetization ensemble
are discussed.Comment: 44 pages RevTeX3, 11 uuencoded Postscript figs. in separate file
Status of the GEO600 gravitational wave detector
The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995.During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run
Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state
An important step in a phospholipid membrane pore formation by melittin
antimicrobial peptide is a reorientation of the peptide from a surface into a
transmembrane conformation. In this work we perform umbrella sampling
simulations to calculate the potential of mean force (PMF) for the
reorientation of melittin from a surface-bound state to a transmembrane state
and provide a molecular level insight into understanding peptide and lipid
properties that influence the existence of the free energy barrier. The PMFs
were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We
observe that the free energy barrier is reduced when the P/L ratio increased.
In addition, we study the cooperative effect; specifically we investigate if
the barrier is smaller for a second melittin reorientation, given that another
neighboring melittin was already in the transmembrane state. We observe that
indeed the barrier of the PMF curve is reduced in this case, thus confirming
the presence of a cooperative effect
First search for gravitational waves from the youngest known neutron star
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia
A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser
Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz
and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and
for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search
frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave
strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of
r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy
conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes.
This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
Parallel Excluded Volume Tempering for Polymer Melts
We have developed a technique to accelerate the acquisition of effectively
uncorrelated configurations for off-lattice models of dense polymer melts which
makes use of both parallel tempering and large scale Monte Carlo moves. The
method is based upon simulating a set of systems in parallel, each of which has
a slightly different repulsive core potential, such that a thermodynamic path
from full excluded volume to an ideal gas of random walks is generated. While
each system is run with standard stochastic dynamics, resulting in an NVT
ensemble, we implement the parallel tempering through stochastic swaps between
the configurations of adjacent potentials, and the large scale Monte Carlo
moves through attempted pivot and translation moves which reach a realistic
acceptance probability as the limit of the ideal gas of random walks is
approached. Compared to pure stochastic dynamics, this results in an increased
efficiency even for a system of chains as short as monomers, however
at this chain length the large scale Monte Carlo moves were ineffective. For
even longer chains the speedup becomes substantial, as observed from
preliminary data for
Hydration interactions: aqueous solvent effects in electric double layers
A model for ionic solutions with an attractive short-range pair interaction
between the ions is presented. The short-range interaction is accounted for by
adding a quadratic non-local term to the Poisson-Boltzmann free energy. The
model is used to study solvent effects in a planar electric double layer. The
counter-ion density is found to increase near the charged surface, as compared
with the Poisson-Boltzmann theory, and to decrease at larger distances. The ion
density profile is studied analytically in the case where the ion distribution
near the plate is dominated only by counter-ions. Further away from the plate
the density distribution can be described using a Poisson-Boltzmann theory with
an effective surface charge that is smaller than the actual one.Comment: 11 Figures in 13 files + LaTex file. 20 pages. Accepted to Phys. Rev.
E. Corrected typos and reference
- …