35 research outputs found

    Exploitation of cloud top characterization from three-channel IR measurements in a physical PMW rain retrieval algorithm

    Get PDF
    Rainfall intensity estimates by passive microwave (PMW) measurements from space perform generally better over the sea surface with respect to land, due to the problems in separating true rain signatures from those produced by surfaces having similar spectral behaviour (e.g. snow, ice, desert and semiarid grounds). The screening procedure aimed at recognizing the various surface types and delimit precipitation is based on tests that rely on PMW measurements only and global thresholds. The shortcoming is that the approach tries to discard spurious precipitating features (often detected over the land-sea border) thus leading to no-rain conservative tests and thresholds. The TRMM mission, with its long record of simultaneous data from the Visible and Infrared Radiometer System (VIRS), the TRMM Microwave Imager (TMI) and rain profiles from the Precipitation Radar (PR) allows for unambiguous testing of the usefulness of cloud top characterization in rain detection. </p><p style=&quot;line-height: 20px;&quot;> An intense precipitation event over the North Africa is analysed exploiting a night microphysical RGB scheme applied to VIRS measurements to classify and characterize the components of the observed scenario and to discriminate the various types of clouds. This classification is compared to the rain intensity maps derived from TMI by means of the Goddard profiling algorithm and to the near-surface rain intensities derived from PR. The comparison allows to quantify the difference between the two rain retrievals and to assess the usefulness of RGB analysis in identifying areas of precipitation

    Multiproxy investigation of the last 2,000 years BP marine paleoenvironmental record along the western Spitsbergen margin

    Get PDF
    A reconstruction of the last 2,000 years BP of environmental and oceanographic changes on the western margin of Spitsbergen was performed using a multidisciplinary approach including the fossil assemblages of diatoms, planktic and benthic foraminifera and calcareous nannofossils and the use of geochemistry (X-ray fluorescence spectroscopy, X-ray diffraction). We identified two warm periods (2,000–1,600 years BP and 1,300–700 years BP) that were associated with the Roman Warm Period and the Medieval Warm Period that alternate with colder oceanic conditions and sea ice coverage occurred during the Dark Ages (1,600–1,300 years BP) and the beginning of the Little Ice Age. During the Medieval Warm Period the occurrence of ice-rafted debris and Aulocoseira spp., a specific diatom genus commonly associated with continental freshwater, suggests significant runoff of meltwaters from local glaciers

    Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge

    Get PDF
    During the Late Pleistocene Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800 m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs

    Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) since the Last Glacial Maximum

    Get PDF
    The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann

    Evidence for a large-magnitude Holocene eruption of Mount Rittmann (Antarctica): A volcanological reconstruction using the marine tephra record

    Get PDF
    In Antarctica, the near-source exposures of volcanic eruption deposits are often limited as they are not well preserved in the dynamic glacial environment, thus making volcanological reconstructions of explosive eruptions extremely challenging. Fortunately, pyroclastic deposits from explosive eruptions are preserved in Southern Ocean sediments surrounding Antarctica, and the tephrostratigraphy of these sequences offers crucial volcanological information including the timing and tempo of past eruptions, their magnitude, and eruption dynamics. Here we report the results of a tephrostratigraphy and tephrochronology study focused on four sediment cores recovered from the Wood Bay area in the western Ross Sea, Antarctica. In all these sedimentary sequences, we found a well-stratified primary tephra of considerable thickness, up to 80 cm, hereafter named the Aviator Tephra (AVT). According to the characteristics of the tephra deposit and its distribution, the AVT was associated with an eruption of considerable intensity, potentially representing one of the largest Holocene eruptions recorded in Antarctica. Based on the major and trace element geochemistry and the mineral assemblage of the tephra, Mount Rittmann was identified as the source of the AVT. A Holocene age of ∼11 ka was determined by radiocarbon dating organic material within the sediments and 40Ar-39Ar dating of alkali-feldspar crystals included in the tephra. Eruption dynamics were initially dominated by hydromagmatic magma fragmentation conditions producing a sustained, relatively wet and ash-rich eruptive cloud. The eruption then evolved into a highly energetic, relatively dry magmatic Plinian eruption. The last phase was characterized by renewed efficient magma-water interaction and/or collapse of the eruptive column producing pyroclastic density currents and associated co-ignimbritic plumes. The distal tephra deposits might be linked to the widespread lag breccia layer previously identified on the rim of the Mount Rittmann caldera which share the same geochemical composition. Diatoms found in the sediments surrounding the AVT and the primary characteristics of the tephra indicate that the Wood Bay area was open sea at the time of the eruption, which is much earlier than previously thought. AVT is also an excellent tephrostratigraphic marker for the Wood Bay area, in the Ross Sea, and a useful marker for future synchronization of continental ice and marine archives in the region

    Post Karte Von Mahrg: Mæhren und Kaÿserlich-Schlesien

    No full text
    POST KARTE VON MAHRG: MÆHREN UND KAŸSERLICH-SCHLESIEN Post Karte Von Mahrg: Mæhren und Kaÿserlich-Schlesien ( -

    Rain area delineation by means of multispectral cloud characterization from satellite

    No full text
    The identification of precipitation areas by microwave based rain algorithms can be improved by means of cloud classification schemes based on multispectral observations. Several recent studies have demonstrated the potential of cloud microphysical and optical characterization for the improvement of passive microwave rain estimates, especially in detecting likely precipitating pixels over land. The multispectral sensing capabilities of MODIS onboard Aqua are exploited to characterize the cloudy scenario, using a twofold approach: a) an RGB technique to qualitatively identify the different cloud systems on the basis of the combination of radiances measured in three selected channels, and b) a quantitative description of cloud top in terms of optical thickness (Ï„), effective radius (R&lt;sub&gt;e&lt;/sub&gt;) and top temperature (T&lt;sub&gt;c&lt;/sub&gt;). The information gathered by the multispectral analysis of the cloud field from MODIS is contrasted with the rain intensity at the ground as derived from the AMSR-E operational algorithm, to assess the statistical relationships between microphysical parameters and the rain intensity for such nearly simultaneous and co-located observations

    Cloud Microphysical Properties Retrieval In The Presence Of Strong Aerosol Events

    No full text
    Clouds are one of the main regulating factors of the Earth&apos;s climate through scattering and absorption of solar radiation as well as emission and absorption of thermal radiation. In consequence, the study of cloud properties is extremely important for understanding their role in climate change mechanisms. Specifically, aerosol particles, natural or anthropogenic, influence cloud-related processes by changing cloud microphysical properties and their radiative properties. Moreover, in certain cases precipitation processes may be affected as described by Rosenfeld (1999, 2000)
    corecore