4 research outputs found

    An Optimization Model For Prioritizing Sewerage Maintenance Scheduling

    Full text link
    Water utility companies, responsible for providing water supply and sewerage services to the urban population, are constantly seeking to improve their service.In the case of sewer systems, effective scheduling of preventive maintenance of urban water infrastructure has been identified as an important activity in order to reduce costs and protect the integrity of citizens and the surrounding, both built and natural, environments. Consequently, with particular focus on Bogot谩 (Colombia), we developed an optimization model that generates a preventive maintenance plan on a set of zones withinthe city. These zones have in common a high failure probability over a defined time period due to sediment-related blockages. Failure probabilities are obtained from the statistical model proposed by Rodr铆guez et al. (2012) which uses an exceptionally long and spatially detailed failure data set obtained from a customer complaints database. The mixed integer optimization model implemented here, which is an adaptation from the one presented by Medaglia et al.(2008), considers a multi-objective function which maximizes the protection of the city. For the maximization process we take into account the entities that would be affected in case of flooding (health centers, education centers, market places, etc.) caused by a sediment-related sewer system blockage. The information about the entities is obtained and modified through Geographic Information Systems (GIS) and Analytic Hierarchy Process (AHP). Furthermore, the model satisfies budget and operational capacity restrictions, due to their finite nature. Based on a model sensitivity analysis, we can conclude that the ratio between preventive and corrective maintenance costs is critical to define a proactive maintenance schedule, while other parameters such as the available budget are not. Making a comparison of the methodology currently used by the local water utility and our model, the later obtained better results in terms of city protection and budget and resources allocation

    Mitigaci贸n con Sistemas Silvopastoriles en Latinoam茅rica: Aportes para la incorporaci贸n en los sistemas de Medici贸n Reporte y Verificaci贸n bajo la CMNUCC

    Get PDF
    En Latinoam茅rica el 46% de las emisiones de GEI proviene del cambio de usos de la tierra y el 20% de la agricultura, en donde el 58% y el 70% de las emisiones son debidas a la ganader铆a. El continuo crecimiento de este sector (+32% previsto al 2050) ha impulsado la expansi贸n de la frontera agropecuaria en los bosques, generando m煤ltiples impactos ambientales entre los cuales se encuentra la emisi贸n de Gases Efecto Invernadero (GEI). Sin embargo, el sector tiene un alto potencial de mitigaci贸n reconocido por pol铆ticas, estrategias y programas de mitigaci贸n nacionales como las Contribuciones Nacionalmente Determinadas (NDC) y de desarrollo sectorial como las Acciones de Mitigaci贸n nacionalmente Apropiadas (NAMA). Entre estas acciones se incluye la implementaci贸n de sistemas silvopastoriles, cuya medici贸n monitoreo y reporte a escala nacional presenta un estado de avance muy limitado, dejando su aporte a la mitigaci贸n invisible. A trav茅s de un Grupo T茅cnico de Trabajo ad hoc se han analizado el avance de los pa铆ses de la regi贸n en la incorporaci贸n de los sistemas silvopastoriles en los sistemas nacionales de Medici贸n/Monitoreo, Reporte y Verificaci贸n (MRV) de los Inventarios Nacionales de Gases Efecto Invernadero, y los requerimientos a cumplir para esto, generando una hoja de ruta a corto-medio plazo as铆 como unas orientaciones t茅cnicas para reducir la brecha existente

    Mitigaci贸n con Sistemas Silvopastoriles en Latinoam茅rica: Aportes para la incorporaci贸n en los sistemas de Medici贸n Reporte y Verificaci贸n bajo la CMNUCC

    Get PDF
    En Latinoam茅rica el 46% de las emisiones de GEI proviene del cambio de usos de la tierra y el 20% de la agricultura, en donde el 58% y el 70% de las emisiones son debidas a la ganader铆a. El continuo crecimiento de este sector (+32% previsto al 2050) ha impulsado la expansi贸n de la frontera agropecuaria en los bosques, generando m煤ltiples impactos ambientales entre los cuales se encuentra la emisi贸n de Gases Efecto Invernadero (GEI). Sin embargo, el sector tiene un alto potencial de mitigaci贸n reconocido por pol铆ticas, estrategias y programas de mitigaci贸n nacionales como las Contribuciones Nacionalmente Determinadas (NDC) y de desarrollo sectorial como las Acciones de Mitigaci贸n nacionalmente Apropiadas (NAMA). Entre estas acciones se incluye la implementaci贸n de sistemas silvopastoriles, cuya medici贸n monitoreo y reporte a escala nacional presenta un estado de avance muy limitado, dejando su aporte a la mitigaci贸n invisible. A trav茅s de un Grupo T茅cnico de Trabajo ad hoc se han analizado el avance de los pa铆ses de la regi贸n en la incorporaci贸n de los sistemas silvopastoriles en los sistemas nacionales de Medici贸n/Monitoreo, Reporte y Verificaci贸n (MRV) de los Inventarios Nacionales de Gases Efecto Invernadero, y los requerimientos a cumplir para esto, generando una hoja de ruta a corto-medio plazo as铆 como unas orientaciones t茅cnicas para reducir la brecha existente

    Branch xylem density variations across the Amazon Basin

    No full text
    Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, rho(x), were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m(-3) for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m(-3) for an Aiouea sp. (Lauraceae) from Caxiuana, Central Para, Brazil. Analysis of variance showed significant differences in average rho(x) across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood
    corecore