2,909 research outputs found

    Accurate Pulmonary Nodule Detection in Computed Tomography Images Using Deep Convolutional Neural Networks

    Full text link
    Early detection of pulmonary cancer is the most promising way to enhance a patient's chance for survival. Accurate pulmonary nodule detection in computed tomography (CT) images is a crucial step in diagnosing pulmonary cancer. In this paper, inspired by the successful use of deep convolutional neural networks (DCNNs) in natural image recognition, we propose a novel pulmonary nodule detection approach based on DCNNs. We first introduce a deconvolutional structure to Faster Region-based Convolutional Neural Network (Faster R-CNN) for candidate detection on axial slices. Then, a three-dimensional DCNN is presented for the subsequent false positive reduction. Experimental results of the LUng Nodule Analysis 2016 (LUNA16) Challenge demonstrate the superior detection performance of the proposed approach on nodule detection(average FROC-score of 0.891, ranking the 1st place over all submitted results).Comment: MICCAI 2017 accepte

    ARES+MOOG - a practical overview of an EW method to derive stellar parameters

    Full text link
    The goal of this document is to describe the important practical aspects in the use of an Equivalent Width (EW) method for the derivation of spectroscopic stellar parameters. A general description of the fundamental steps composing any EW method is given, together with possible differences that may be found in different methods used in the literature. Then ARES+MOOG is then used as an example where each step of the method is described in detail. A special focus is given for the specific steps of this method, namely the use of a differential analysis to define the atomic data for the adopted line list, the automatic EW determinations, and the way to find the best parameters at the end of the procedure. Finally, a practical tutorial is given, where we focus on simple exercises useful to illustrate and explain the dependence of the abundances with the assumed stellar parameters. The interdependences are described and a clear procedure is given to find the "final" stellar parameters.Comment: 15 pages, 4 figures, accepted for publication as a chapter in "Determination of Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    Impact of a Multicomponent Digital Therapeutic Mobile App on Medication Adherence in Patients with Chronic Conditions: Retrospective Analysis.

    Full text link
    BACKGROUND:Strategies to improve medication adherence are widespread in the literature; however, their impact is limited in real practice. Few patients persistently engage long-term to improve health outcomes, even when they are aware of the consequences of poor adherence. Despite the potential of mobile phone apps as a tool to manage medication adherence, there is still limited evidence of the impact of these innovative interventions. Real-world evidence can assist in minimizing this evidence gap. OBJECTIVE:The objective of this study was to analyze the impact over time of a previously implemented digital therapeutic mobile app on medication adherence rates in adults with any chronic condition. METHODS:A retrospective observational study was performed to assess the adherence rates of patients with any chronic condition using Perx Health, a digital therapeutic that uses multiple components within a mobile health app to improve medication adherence. These components include gamification, dosage reminders, incentives, educational components, and social community components. Adherence was measured through mobile direct observation of therapy (MDOT) over 3-month and 6-month time periods. Implementation adherence, defined as the percentage of doses in which the correct dose of a medication was taken, was assessed across the study periods, in addition to timing adherence or percentage of doses taken at the appropriate time (±1 hour). The Friedman test was used to compare differences in adherence rates over time. RESULTS:We analyzed 243 and 130 patients who used the app for 3 months and 6 months, respectively. The average age of the 243 patients was 43.8 years (SD 15.5), and 156 (64.2%) were female. The most common medications prescribed were varenicline, rosuvastatin, and cholecalciferol. The median implementation adherence was 96.6% (IQR 82.1%-100%) over 3 months and 96.8% (IQR 87.1%-100%) over 6 months. Nonsignificant differences in adherence rates over time were observed in the 6-month analysis (Fr(2)=4.314, P=.505) and 3-month analysis (Fr(2)=0.635, P=.728). Similarly, the timing adherence analysis revealed stable trends with no significant changes over time. CONCLUSIONS:Retrospective analysis of users of a medication adherence management mobile app revealed a positive trend in maintaining optimal medication adherence over time. Mobile technology utilizing gamification, dosage reminders, incentives, education, and social community interventions appears to be a promising strategy to manage medication adherence in real practice

    Transit Photometry as an Exoplanet Discovery Method

    Full text link
    Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method's strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems, and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.Comment: Review chapte

    Impact of a Multicomponent Digital Therapeutic Mobile App on Medication Adherence in Patients with Chronic Conditions: Retrospective Analysis (Preprint)

    Full text link
    BACKGROUND Strategies to improve medication adherence are widespread in the literature; however, their impact is limited in real practice. Few patients persistently engage long-term to improve health outcomes, even when they are aware of the consequences of poor adherence. Despite the potential of mobile phone apps as a tool to manage medication adherence, there is still limited evidence of the impact of these innovative interventions. Real-world evidence can assist in minimizing this evidence gap. OBJECTIVE The objective of this study was to analyze the impact over time of a previously implemented digital therapeutic mobile app on medication adherence rates in adults with any chronic condition. METHODS A retrospective observational study was performed to assess the adherence rates of patients with any chronic condition using Perx Health, a digital therapeutic that uses multiple components within a mobile health app to improve medication adherence. These components include gamification, dosage reminders, incentives, educational components, and social community components. Adherence was measured through mobile direct observation of therapy (MDOT) over 3-month and 6-month time periods. Implementation adherence, defined as the percentage of doses in which the correct dose of a medication was taken, was assessed across the study periods, in addition to timing adherence or percentage of doses taken at the appropriate time (±1 hour). The Friedman test was used to compare differences in adherence rates over time. RESULTS We analyzed 243 and 130 patients who used the app for 3 months and 6 months, respectively. The average age of the 243 patients was 43.8 years (SD 15.5), and 156 (64.2%) were female. The most common medications prescribed were varenicline, rosuvastatin, and cholecalciferol. The median implementation adherence was 96.6% (IQR 82.1%-100%) over 3 months and 96.8% (IQR 87.1%-100%) over 6 months. Nonsignificant differences in adherence rates over time were observed in the 6-month analysis (Fr(2)=4.314, &lt;i&gt;P&lt;/i&gt;=.505) and 3-month analysis (Fr(2)=0.635, &lt;i&gt;P&lt;/i&gt;=.728). Similarly, the timing adherence analysis revealed stable trends with no significant changes over time. CONCLUSIONS Retrospective analysis of users of a medication adherence management mobile app revealed a positive trend in maintaining optimal medication adherence over time. Mobile technology utilizing gamification, dosage reminders, incentives, education, and social community interventions appears to be a promising strategy to manage medication adherence in real practice. </sec

    Histone arginine methylation regulates pluripotency in the early mouse embryo

    Get PDF
    It has been generally accepted that the mammalian embryo starts its development with all cells identical, and only when inside and outside cells form do differences between cells first emerge. However, recent findings show that cells in the mouse embryo can differ in their developmental fate and potency as early as the four-cell stage1,2,3,4. These differences depend on the orientation and order of the cleavage divisions that generated them2,5. Because epigenetic marks are suggested to be involved in sustaining pluripotency6,7, we considered that such developmental properties might be achieved through epigenetic mechanisms. Here we show that modification of histone H3, through the methylation of specific arginine residues, is correlated with cell fate and potency. Levels of H3 methylation at specific arginine residues are maximal in four-cell blastomeres that will contribute to the inner cell mass (ICM) and polar trophectoderm and undertake full development when combined together in chimaeras. Arginine methylation of H3 is minimal in cells whose progeny contributes more to the mural trophectoderm and that show compromised development when combined in chimaeras. This suggests that higher levels of H3 arginine methylation predispose blastomeres to contribute to the pluripotent cells of the ICM. We confirm this prediction by overexpressing the H3-specific arginine methyltransferase CARM1 in individual blastomeres and show that this directs their progeny to the ICM and results in a dramatic upregulation of Nanog and Sox2. Thus, our results identify specific histone modifications as the earliest known epigenetic marker contributing to development of ICM and show that manipulation of epigenetic information influences cell fate determination

    Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.

    Get PDF
    BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography

    Locomotor adaptability in persons with unilateral transtibial amputation

    Get PDF
    Background Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb

    RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security

    Get PDF
    In this paper, we propose the most competent blockchain ring confidential transaction protocol (RingCT3.0) for protecting the privacy of the sender\u27s identity, the recipient\u27s identity and the confidentiality of the transaction amount. For a typical 2-input transaction with a ring size of 1024, the ring signature size of our RingCT3.0 protocol is 98% less than the ring signature size of the original RingCT1.0 protocol used in Monero. Taking the advantage of our compact RingCT3.0 transcript size, privacy-preserving cryptocurrencies can enjoy a much lower transaction fee which will have a significant impact to the crypto-economy. Our implementation result shows that our protocol outperforms existing solutions, in terms of efficiency and security. In addition to the significant improvement in terms of efficiency, our scheme is proven secure in a stronger security model. We remove the trusted setup assumption used in RingCT2.0. Our scheme is anonymous against ring insider (non-signing users who are included in the ring), while we show that the RingCT1.0 is not secure in this strong model. Our RingCT3.0 protocol relies on our brand new designed ring signature scheme as an underlying primitive, which is believed to be the most efficient ring signature scheme up-to-date (in terms of signature size) without trusted setup. Our ring signature scheme is derived from our novel design of an efficient set membership proof of n public keys, with the proof size of O(log n). It is the first set membership proof without trusted setup for public keys in the base group, instead of in the exponent. These two primitives are of independent interest

    Non-thermal emission processes in massive binaries

    Full text link
    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy and Astrophysics Review. Astronomy and Astrophysics Review, in pres
    corecore