33,752 research outputs found
Enhancing single-parameter quantum charge pumping in carbon-based devices
We present a theoretical study of quantum charge pumping with a single ac
gate applied to graphene nanoribbons and carbon nanotubes operating with low
resistance contacts. By combining Floquet theory with Green's function
formalism, we show that the pumped current can be tuned and enhanced by up to
two orders of magnitude by an appropriate choice of device length, gate voltage
intensity and driving frequency and amplitude. These results offer a promising
alternative for enhancing the pumped currents in these carbon-based devices.Comment: 3.5 pages, 2 figure
Micromagnetic simulations of persistent oscillatory modes excited by spin-polarized current in nanoscale exchange-biased spin valves
We perform 3D micromagnetic simulations of current-driven magnetization
dynamics in nanoscale exchange biased spin-valves that take account of (i) back
action of spin-transfer torque on the pinned layer, (ii) non-linear damping and
(iii) random thermal torques. Our simulations demonstrate that all these
factors significantly impact the current-driven dynamics and lead to a better
agreement between theoretical predictions and experimental results. In
particular, we observe that, at a non-zero temperature and a sub-critical
current, the magnetization dynamics exhibits nonstationary behaviour in which
two independent persistent oscillatory modes are excited which compete for the
angular momentum supplied by spin-polarized current. Our results show that this
multi-mode behaviour can be induced by combined action of thermal and spin
transfer torques.Comment: 7pages, 2 figures, submitted JAP via MMM 200
A strategy for the design of skyrmion racetrack memories
Magnetic storage based on racetrack memory is very promising for the design
of ultra-dense, low-cost and low-power storage technology. Information can be
coded in a magnetic region between two domain walls or, as predicted recently,
in topological magnetic objects known as skyrmions. Here, we show the
technological advantages and limitations of using Bloch and Neel skyrmions
manipulated by spin current generated within the ferromagnet or via the
spin-Hall effect arising from a non-magnetic heavy metal underlayer. We found
that the Neel skyrmion moved by the spin-Hall effect is a very promising
strategy for technological implementation of the next generation of skyrmion
racetrack memories (zero field, high thermal stability, and ultra-dense
storage). We employed micromagnetics reinforced with an analytical formulation
of skyrmion dynamics that we developed from the Thiele equation. We identified
that the excitation, at high currents, of a breathing mode of the skyrmion
limits the maximal velocity of the memory
Revisiting the luminosity function of single halo white dwarfs
White dwarfs are the fossils left by the evolution of low-and
intermediate-mass stars, and have very long evolutionary timescales. This
allows us to use them to explore the properties of old populations, like the
Galactic halo. We present a population synthesis study of the luminosity
function of halo white dwarfs, aimed at investigating which information can be
derived from the currently available observed data. We employ an up-to-date
population synthesis code based on Monte Carlo techniques, that incorporates
the most recent and reliable cooling sequences for metal poor progenitors as
well as an accurate modeling of the observational biases. We find that because
the observed sample of halo white dwarfs is restricted to the brightest stars
only the hot branch of the white dwarf luminosity function can be used for such
purposes, and that its shape function is almost insensitive to the most
relevant inputs, like the adopted cooling sequences, the initial mass function,
the density profile of the stellar spheroid, or the adopted fraction of
unresolved binaries. Moreover, since the cut-off of the observed luminosity has
not been yet determined only lower limits to the age of the halo population can
be placed. We conclude that the current observed sample of the halo white dwarf
population is still too small to obtain definite conclusions about the
properties of the stellar halo, and the recently computed white dwarf cooling
sequences which incorporate residual hydrogen burning should be assessed using
metal-poor globular clusters.Comment: 9 pages, 9 figures, accepted for publication in A&
Spin-torque driven magnetic vortex self-oscillations in perpendicular magnetic fields
We have employed complete micromagnetic simulations to analyze dc current
driven self-oscillations of a vortex core in a spin-valve nanopillar in a
perpendicular field by including the coupled effect of the spin-torque and the
magnetostatic field computed self-consistently for the entire spin-valve. The
vortex in the thicker nanomagnet moves along a quasi-elliptical trajectory that
expands with applied current, resulting in blue-shifting of the frequency,
while the magnetization of the thinner nanomagnet is non-uniform due to the
bias current. The simulations explain the experimental magnetoresistance-field
hysteresis loop and yield good agreement with the measured frequency vs.
current behavior of this spin-torque vortex oscillator.Comment: 10 pages, 3 figures, to be appear on AP
The likelihood for supernova neutrino analyses
We derive the event-by-event likelihood that allows to extract the complete
information contained in the energy, time and direction of supernova neutrinos,
and specify it in the case of SN1987A data. We resolve discrepancies in the
previous literature, numerically relevant already in the concrete case of
SN1987A data.Comment: 7 pages, 2 figures. Accepted for publication in PR
- …